Home
Class 12
MATHS
If .^(20)C(1)+(2^(2)) .^(20)C(2) + (3^(2...

If `.^(20)C_(1)+(2^(2)) .^(20)C_(2) + (3^(2)).^(20)C_(3) +......+(20^(2)).^(20)C_(20)=A(2^(beta))` , then the ordered pair `(A, beta)` is equal to

A

`(420 , 19)`

B

`(420 , 18)`

C

`(380, 18)`

D

` (380, 19)`

Text Solution

Verified by Experts

The correct Answer is:
B

We Know,
`(1+x)^(n) = .^(n)C_(0) + .^(n)C_(1)x + .^(n)C_(2) x^(2) +... +.^(n)C_(n) x^(n) `
On differentiating both sides w. r. t. X, we get
`n(1+x)^(n-1)=.^(n)C_(1) + 2 .^(n)C_(2) x + ... + n .^(n)C_(n) x^(n-1)`
On multiplying both sides by x, we get
`n x(1+x)^(n-1)=.^(n)C_(1)x+2^(n) C_(2)x^(2)+...+n .^(n)C_(n) x^(n) `
Again on differentiating both sides w.r.t. x, we get
`n[(1+x)^(n-1) +(n-1) x (1+x)^(n-2)]=.^(n)C_(1) + 2^(2) .^(n)C_(2)x+...+ n^(2) .^(n)C_(n) x^(n-1) `
Now putting x = 1 in both sides, we get
`.^(n)C_(1) +(2^(2)).^(n)C_(2)+(3^(2)) .^(n)C_(3) + ...+(n^(2)).^(n)C_(n) = n(2^(n-1)+(n-1) 2^(n-2))`
For n = 20, we get
`.^(20)C_(1) +(2^(2)) .^(20)C_(2)+(3^(2)) .^(20)C_(3) + ...+ (20)^(2) .^(20)C_(20) `
` = 20 (2^(19)+(19) 2^(18))`
` = 20 (2+19) 2^(18) = 420 (2^(18))`
` = A(2^(B))` (given)
On comparing, we get
(A,B) = (420, 18)
Promotional Banner

Similar Questions

Explore conceptually related problems

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of a^(3) + b^(3) + c^(3) - 3abc is

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of (a-b)^(2) + (b-c)^(2) + (c-a)^(2) is

If Sigma_(i=1)^(20) ((""^(20)C_(i-1))/(""^(20)C_(i)+""^(20)C_(i-1)))^(3)=(k)/(21) , then k equals

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

"^(30)C_(0)*^(20)C_(10)+^(31)C_(1)*^(19)C_(10)+^(32)C_(2)*18C_(10)+....^(40)C_(10)*^(10)C_(10) is equal to

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

Find the value of ^20 C_0-(^(20)C_1)/2+(^(20)C_2)/3-(^(20)C_3)/4+dot

If (1 + x - 3x^(2))^(10) = a_(0) + a_(1)x + a_(2)x^(2) + ....... + a_(20)x^(20) , then a_(2) + a_(4) + a_(6) + ……. + a_(20) =

The sum of series ^(20)C_0-^(20)C1+^(20)C2-^(20)C3++^(20)C 10 is

The value of "^20 C_0+^(20)C_1+^(20)C_2+^(20)C_3+^(20)C_4+^(20)C_ 12+^(20)C_ 13+^(20)C_14+^(20)C_15 is a. 2^(19)-(( "^(20)C_10 + "^(20)C_9))/2 b. 2^(19)-((^(20)C 10+2xx^(20)C9))/2 c. 2^(19)-(^(20)C 10)/2 d. none of these