Home
Class 12
MATHS
The derivative of tan^(-1)((sin x - cos...

The derivative of `tan^(-1)((sin x - cos x)/(sin x + cos x))`, with respect to ` x/2`, where `(x in(0,pi/2))` is

A

1

B

`2/3`

C

`1/2`

D

2

Text Solution

Verified by Experts

The correct Answer is:
D

Let `f(x) = tan ^(-1) ((sin x - cos x)/(sin x + cos x)) = tan^(-1) ((tan x-1)/(tan x +1)) `
[dividing numerator and denominator by `cos x gt 0, x in (0, pi/2)`]
` = tan^(-1) ((tan x - tan pi/4)/(1+(tan pi/4) (tan x)))`
` = tan^(-1) [tan( x - pi/4)]`
`[:' (tan A-tanB)/(1+tan A tan B) = tan (A-B)]`
Since, it is given that ` x in (0, pi/2) `, so
` x - pi/4 in (-pi/4, pi/4)`
Also, for ` (x-pi/4) in (-pi/4, pi/4)`,
Than,
` f(x) = tan^(-1) (tan(x- pi/4)) = x - pi/4`
[`:' tan^(-1) tan theta=theta, " for " theta in (-pi/2, pi/2)`]
Now, derivative of ` f(x) w.r.t. x/2 ` is
`(d(f(x)))/(d(x//2))=2 (df(x))/(d(x))`
` = 2 xxd/(dx) (x-pi/4) =2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin x+cos x=1 +sin x cos x

Find the derivative with tan^(-1) ((sinx )/(1 + cos x)) with respect to tan^(-1) ((cos x)/(1 + sin x))

(sin x + sin 3x )/( cos x + cos 3x )= tan 2x

Find the derivative of sin^(-1) ((2x)/(1+x^2)) with respect to tan^(-1) x .

(sin 5x + sin 3x )/( cos 5x + cos 3x ) = tan 4x

(sin x - sin 3x)/( sin ^(2) x - cos ^(2) x) = 2 sin x

Find the derivatives of the following : tan^(-1) ((cos x + sin x)/(cos x - sin x))