Home
Class 12
MATHS
If 2y=(cot^(-1)((sqrt3 cos x + sin x)/(c...

If `2y=(cot^(-1)((sqrt3 cos x + sin x)/(cos x - sqrt3 sin x)))^(2) , x in (0, pi/2) " then " (dy)/(dx) ` is equal to

A

`pi/6 - x`

B

` x- pi/6`

C

` pi/3 - x`

D

` 2x - pi/3`

Text Solution

Verified by Experts

The correct Answer is:
B

Given expression is
`2y=(cot^(-1)((sqrt3 cos x + sin x)/( cos x -sqrt3 sin x)))^(2) = (cot^(-1)((sqrt3 cot x +1)/(cot x - sqrt3)))^(2)`
[dividing each term of numerator and denominator by sin x]
`=(cot^(-1)((cot. pi/6 cot x + 1)/(cot x - cot .pi/6)))^(2)" "[:' cot. pi/6 =sqrt3]`
`=(cot^(-1)(cot(pi/6 - x)))^(2)" "[:' cot (A-B)=(cot A cot B + 1)/(cot B - cot A) ]`
`={{:(" "(pi/6 - x)^(2)", " 0 lt x lt pi/6),((pi+(pi/6 - x))^(2)", " pi/6 lt x lt pi/2):}" "[:' cot^(-1) (cot theta) ={{:(pi+theta", " -pi lt theta lt 0),(theta", " 0 lt thetalt pi),(theta-pi", " pi lt thetalt 2pi):}]`
`rArr 2y={{:((pi/6 - x)^(2)", " 0 lt x lt pi/6),(((7pi)/6-x)^(2)", " pi/6 lt x lt pi/2):}`
`rArr 2(dy)/(dx) ={{:(2(pi/6-x)(-1)", " 0 lt xlt pi/6),(2((7pi)/6 - x) (-1)", " pi/6 lt xlt pi/2):}`
`rArr (dy)/(dx) ={{:(x-pi/6", " 0 lt xlt pi/6),(x-(7pi)/6", " pi/6 lt xlt pi/2):}`
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin^(-1)x+cos^(-1)x " then " (dy)/(dx) is

int(cos2x)/((e^(-x)+cosx)sqrt(1+sin2x))dx,x in(0,(pi)/(2)) is equal to

Solve sqrt3 sin x+cos x=2

If y=cos(sinx^(2)), " then " (dy)/(dx) " at " x=sqrt(pi/2) is

Solve cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]

Solve the equation sqrt3cos x + sin x = sqrt2 .

(cos 4x +cos 3x + cos 2x )/( sin 4x + sin 3x + sin 2x)= cot 3x

If f(x) = |cos x| + |sin x| , then dy/dx at x = (2pi)/3 is equal to

Solve : 2sin(3x+(pi)/(4))=sqrt(1+8sin2x.cos^(2)2x),x in (0,2pi)