Home
Class 12
MATHS
For xgt1, " if " (2x)^(2y)=4e^(2x-2y)", ...

For `xgt1, " if " (2x)^(2y)=4e^(2x-2y)", then " (1+log_e2x)^2(dy)//(dx)` is equal to

A

`(x log_(e) 2x + log_(e) 2)/x `

B

` (x log_(e) 2x - log_(e) 2)/x `

C

` x log_(e) 2 x`

D

` log_(e) 2x`

Text Solution

Verified by Experts

The correct Answer is:
B

Given equation is
`(2x)^(2y) = 4*e^(2x-2y)` ….(i)
On applying `'log_(e)`' both sides, we get
`log_(e)(2x)^(2y) = log_(e)4+log_(e)4+log_(e)e^(2x-2y) `
`2ylog_(e)(2x)= log_(e)(2)^(2)+(2x-2y)`
`[:' log_(e) n^(m) = m log_(e) n and log_(e) e^(f(x))=f(x)]`
`rArr (2log_(e)(2x)+2)y= 2x+2 log_(e) (2)`
`rArr" "y=(x+log_(e) 2)/(1+log_(e)(2x))`
On differentiating 'y' w.r.t. 'x', we get
`(dy)/(dx) = ((1+log_(e)(2x))1-(x+log_(e)2)2/(2x))/((1+log_(e)(2x))^(2))`
`=(1+log_(e)(2x)-1-1/x log_(e)2)/((1+log_(e)(2x))^(2))`
So,`(1+log_(e)(2x))^(2)(dy)/(dx)=((x log_(e)(2x)-log_(e) 2)/x)`
Promotional Banner

Similar Questions

Explore conceptually related problems

for x > 1 if (2x)^(2y)=4e^(2x-2y) then (1+log_e 2x)^2 (dy)/(dx)

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

If xlog_e(log_ex)-x^2+y^2=4(ygt0)",then" dy//dx" at " x=e is equal to

(dy)/(dx) + 3y = e^(-2x)

x log x(dy)/(dx) + y = (2)/(x)log x

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

Let y = y(x) be the solution of the differential equation x dy/dx+y=xlog_ex,(xgt1)." If " 2y(2)=log_e4-1," then "y(e) is equal to

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

(dy)/(dx) = e^(2x-y) + x^(3) e^(-y)