Home
Class 12
MATHS
If xloge(logex)-x^2+y^2=4(ygt0)",then" d...

If `xlog_e(log_ex)-x^2+y^2=4(ygt0)",then" dy//dx" at " x=e` is equal to

A

` e/sqrt(4+e^(2))`

B

` ((2e-1))/(2sqrt(4+e^(2))`

C

`((1+2e))/(sqrt(4+e^(2))`

D

` ((1+2e))/(2sqrt(4+e^(2))`

Text Solution

Verified by Experts

The correct Answer is:
B

We have, ` x log_(e) (log_(e)x) - x^(2) + y^(2) = 4`, which can be written as
`y^(2) = 4 + x^(2) - x log_(e) (log_(e) x)` …(i)
Now, differentiating Eq. (i) w.r.t. x, we get
` 2y(dy)/(dx) = 2x - x1/(log_(e) x)*1/x - 1* log_(e) (log_(e) x) `
[by using product of derivative]
`rArr" "((dy)/(dx)) = (2x-1/(log_(e)x) -log_(e) (log_(e) x))/(2y) ` ....(ii)
Now, at ` x = e, y^(2) = 4 + e^(2) - e log_(e) (log_(e) e) `
[using Eq. (i)]
`= 4+e^(2) - e log_(e) (1) = 4 + e^(2) - 0`
` = e^(2) + 4 `
` rArr" " y = sqrt(e^(2)+4)" "[:' y gt 0]`
`:. " At " x = e and y = sqrt(e^(2)+4)`,
`(dy)/(dx) = (2e-1-0)/(2sqrt(e^(2)+4))=(2e-1)/(2sqrt(e^(2)+4))` [using Eq. (ii)]
Promotional Banner

Similar Questions

Explore conceptually related problems

I=int \ log_e (log_ex)/(x(log_e x))dx

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

If y=(log)_(sinx)(tanx),t h e n(((dy)/(dx)))_(pi/4)"is equal to" (a) 4/(log2) (b) -4log2 (c) (-4)/(log2) (d) none of these

int ((x+2)/(x+4))^2 e^x dx is equal to

Let y = y(x) be the solution of the differential equation x dy/dx+y=xlog_ex,(xgt1)." If " 2y(2)=log_e4-1," then "y(e) is equal to

If y=e^(sqrt(x))+e^(-sqrt(x)) , then (dy)/(dx) is equal to (a) (e^(sqrt(x)))/(2sqrt(x)) (b) (e^(sqrt(x))-e^(-sqrt(x)))/(2x) 1/(2sqrt(x))sqrt(y^2-4) (d) 1/(2sqrt(x))sqrt(y^2+4)

If x y=e^((x-y)), then find (dy)/(dx)

"If "log_(e)(log_(e) x-log_(e)y)=e^(x^(2_(y)))(1-log_(e)x)," then find the value of "y'(e).

(dy)/(dx) + 3y = e^(-2x)