Home
Class 12
MATHS
"If "y=sec (tan^(-1)x)," then "(dy)/(dx)...

`"If "y=sec (tan^(-1)x)," then "(dy)/(dx)" at "x=1` is equal to

A

`1/sqrt2`

B

`1/2`

C

1

D

`sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
A

Given,` y = sec (tan^(1) x) `
Let `" " tan^(-1) x = theta`
` rArr" " x = tan theta`
` :." " y = tan theta = sqrt(1+x^(2)) `
On differentiating w.r.t. X, we get
`(dy)/(dx) = 1/(2sqrt(1+x^(2)) * 2x `
At ` x = 1, " " (dy)/(dx) = 1/(sqrt2) `
Promotional Banner

Similar Questions

Explore conceptually related problems

If y="sec"(tan^(-1)x),t h e n(dy)/(dx)a tx=1 is (a) cospi/4 (b) sinpi/2 (c) sinpi/6 (d) cospi/3

If y=sin^(-1)x+cos^(-1)x " then " (dy)/(dx) is

If y = (tan x-1)/(sec x) then dy/dx=?

If y=(1-x)^(2)/x^(2), " then " (dy)/(dx)= is

If y = e^(tan^(-1) x) . find dy/dx

If y=tan^(-1)((2x)/(1-x^2))" find "(dy)/(dx) .

If (cos x)^(y) = (cos y)^(x) , "then" (dy)/(dx) is equal to

If y = (tan x)/(x) then find dy/dx

"If "xy+y^(2)=tan x + y," then find "(dy)/(dx).