Home
Class 12
MATHS
(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2...

`(d^2x)/(dy^2)` equals: (1) `((d^2y)/(dx^2))^(-1)` (2) `-((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3)` (3) `((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-2)` (4) `-((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3)`

A

`((d^(2)y)/(dx^(2)))^(-1)`

B

`-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3)`

C

`((d^(2)y)/(dx^(2)))((dy)/(dx))^(-2)`

D

`-((d^(2)y)/(dx^(2)))((dy)/(dx))^(-3)`

Text Solution

Verified by Experts

The correct Answer is:
D

Since, `(dx)/(dy) = 1/(dy//dx) = ((dy)/(dx))^(-1) `
` rArr" " d/(dy) ((dx)/(dy)) = d/(dx) ((dy)/(dx))^(-1) (dx)/(dy) `
` rArr" " (d^(2)x)/(dy^(2)) =- ((d^(2)y)/(dx^(2)))((dy)/(dx))^(-2)((dx)/(dy)) =- ((d^(2)y)/(dx^(2))((dy)/(dx))^(-3) `
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (d^2y)/(dx^2)=((dy)/(dx))^2

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

The second derivative of a single valued function parametrically represented by x=varphi(t)a n dy=psi(t) (where varphi(t)a n dpsi(t) are different function and varphi^(prime)(t)!=0 ) is given by (d^2y)/(dx^2)=(((dx)/(dt))((d^2y)/(dt^2))-((d^2x)/(dt^2))((dy)/(dt))/(((dx)/(dt))^2) (d^2y)/(dx^2)=(((dx)/(dt))((d^2y)/(dt^2))-((d^2x)/(dt^2))((dy)/(dt))/(((dx)/(dt))^3) (d^2y)/(dx^2)=(((d^2x)/(dt))((d^y)/(dt^2))-((d^x)/(dt^))((d^2y)/(dt^2))/(((dx)/(dt))^3) (d^2y)/(dx^2)=(((d^2x)/(dt^2))((d^y)/(dt^))-((d^2x)/(dt^2))((d^y)/(dt^))/(((dx)/(dt))^3)

If R=([1+((dy)/(dx))^2]^(3//2))/((d^2y)/(dx2)) , then R^(2//3) can be put in the form of 1/(((d^2y)/(dx^2))^(2//3))+1/(((d^2x)/(dy^2))^(2//3)) b. 1/(((d^2y)/(dx^2))^(2//3))-1/(((d^2x)/(dy^2))^(2//3)) c. 2/(((d^2y)/(dx^2))^(2//3))+2/(((d^2x)/(dy^2))^(2//3)) d. 1/(((d^2y)/(dx^2))^(2//3))dot1/(((d^2x)/(dy^2))^(2//3))

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

(1+x^(2))(dy)/(dx) = 1-y

Solve y^(2)+x^(2)(dy)/(dx)=xy(dy)/(dx)

(1+x+xy^(2))(dy)/(dx)+(y+y^(3))=0

Find the order and degree of the following differential equations. i) (dy)/(dx)+y=1/((dy)/(dx)) , ii) e^((d^(3)y)/(dx^(3)))-x(d^(2)y)/(dx^(2))+y=0 , iii) sin^(-1)((dy)/(dx))=x+y , iv) log_(e)((dy)/(dx))=ax+by v) y(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-4y(dy)/(dx)=0