Home
Class 12
MATHS
If f(r)(x), g(r)(x), h(r) (x), r=1, 2, ...

If `f_(r)(x), g_(r)(x), h_(r) (x), r=1, 2, 3` are polynomials in x such that ` f_(r)(a) = g_(r)(a) = h_(r) (a), r=1, 2, 3`
`and " "F(x) =|{:(f_(1)(x)" "f_(2)(x)" "f_(3)(x)),(g_(1)(x)" "g_(2)(x)" "g_(3)(x)),(h_(1)(x)" "h_(2)(x)" "h_(3)(x)):}|`
then F'(x) at x = a is ..... .

Text Solution

Verified by Experts

The correct Answer is:
0

Given, `F(x)=|{:(f_(1)(x)" "f_(2)(x)" "f_(3)(x)),(g_(1)(x)" "g_(2)(x)" "g_(3)(x)),(h_(1)(x)" "h_(2)(x)" "h_(3)(x)):}|`
`:." "F'(x)=|{:(f_(1)'(x)" "f_(2)'(x)" "f_(3)'(x)),(g_(1)(x)" "g_(2)(x)" " g_(3)(x)),(h_(1)(x)" "h_(2)(x)" "h_(3)(x)):}| +|{:(f_(1)(x)" "f_(2)(x)" "f_(3)(x)),(g_(1)'(x)" "g_(2)'(x)" "g_(3)'(x)),(h_(1)(x)" "h_(2)(x)" "h_(3)(x) ):}|+|{:(f_(1)(x)" "f_(2)(x)" "f_(3)(x)),(g_(1)(x)" "g_(2)(x)" "g_(3)(x)),(h_(1)'(x)" "h_(2)'(x)" " h_(3)'(x)):}|`
`rArr" "F'(a) = 0+0+0=0`
`[:' f_(r)(a) = g_(r)(a) = h_(r) (a) , r=1,2,3]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f_r(x),g_r(x),h_r(x),r=1,2,3 are polynomials such that f_r(a)=g_r(a)=h_r(a),r=1,2,3a n d F(x)=|[f_1(x),f_2(x),f_3(x)],[g_1(x),g_2(x),g_3(x)],[h_1(x),h_2(x),h_3(x)]| then F^(prime)(x)a tx=a is____________________

Is f(x)xx g(x)xx r(x)=LCM[f(x),g(x),r(x)]xx GCD [f(x),g(x),r(x)] ?

f(x) is a polynomial function, f: R rarr R, such that f(2x)=f'(x)f''(x). The value of f(3) is

Let f be a differentiable function such that f(1) = 2 and f'(x) = f (x) for all x in R . If h(x)=f(f(x)), then h'(1) is equal to

Given f(x) = 3 + x : g(x) = x^(2) h(x) = (1)/(x) find fo (goh)

If f(a) = 2, f'(a) = 1, g(a) = -1, g' (a) = 2 . Then underset(x rarr a)(lim) (g (x) f(a) - g(a) f(x))/(x -a) is

Let f(x)=(x^(5)-1)(x^(3)+1),g(x)=(x^(2)-1)(x^(2)-x+1) and let h(x) be such that f(x)=g(x)h(x) . Then lim_(xto1)h(x) is

For x in R-{0,1}, " let " f_(1)(x)=(1)/(x), f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x) be three given functions. If a function, J(x) satisfies (f_(2) @J@f_(1))(x)=f_(3)(x), " then " J(x) is equal to

Consider the function f(x) , g(x) ,h(x) as given below , Show that (f^(@) g) ^(@) h =f^(@) (g^(@) h) in each case. f(x) =-x-1 ,g(x) =3x+ 1 and h (x) =x+4