Home
Class 12
MATHS
Find (dy)/(dx)at x=-1,w h e n(sin"y")^(...

Find `(dy)/(dx)at x=-1,w h e n(sin"y")^(sin(pi/2x))+(sqrt(3))/2sec^(-1)(2x)+ 2^xtan(log(x+2))=0`

Text Solution

Verified by Experts

The correct Answer is:
`3/(pisqrt(pi^(2)-3)) `

Here, `(siny)^(sin.pi/2x) +sqrt3/2 sec^(-1)(2x)+2^(x) tan {log (x+2)}=0`
On differentiating both sides, we get
`(sin y)^(sin.pi/2 x)*log (sin y)*cos.pi/2 x*pi/2`
`" "+(sin. pi/2x)(sin y)^((sin .pi/2 x)-1)*cos y *(dy)/(dx) `
`" "+sqrt3/2*2/((2|x|)sqrt(4x^(2)-1))+(2^(x)*sec^(2){log (x+2)})/((x+2))`
`" "+ 2^(x) log 2* tan {log (x+2)}=0`
Putting `(x=- 1, y = - sqrt3/pi)`, we get
`(dy)/(dx)=(-sqrt3/pi)^(2)/sqrt(1-(sqrt(3)/pi)^(2))=3/(pisqrt(pi^(2)-3))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for the function: y=e^sin(x^2)

Find (dy)/(dx) for the function: y=a^((sin^(-1)x))^2

Find (dy)/(dx) if y =e^(x) sin 2x

Find (dy)/(dx) for y=sin(x^2+1)dot

Find (dy)/(dx) in the following : 2x+3y= sin x

Find (dy)/(dx) for y=sin^(-1)(cosx), where x in (0,2pi)dot

Find (dy)/(dx) if y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1))

Find (dy)/(dx) in the following : y= sin^(-1) ((2x)/(1+x^(2))) .

Find (dy)/(dx) in the following : 2x+3y= sin y .

Find (dy)/(dx)," if "y= sin^(-1)x +sin^(-1)sqrt(1-x^(2)), 0 lt x lt 1 .