Home
Class 12
MATHS
If x=cos e ctheta-sinthetaa n dy=cos e c...

If `x=cos e ctheta-sinthetaa n dy=cos e c^ntheta-sin^ntheta,` then show that `(x^2+4)((dy)/(dx))^2=n^2(y^2+4)dot`

Text Solution

Verified by Experts

Given, ` x = sec theta-cos theta and y = sec ^(n) theta-cos^(n) theta`
On differentiating w.r.t. ` theta` respectively, we get
`(dx)/(d theta) = sec theta tan theta + sin theta`
and ` (dy)/(d theta) = n sec^(n-1) theta* sec theta tan theta - n cos^(n-1) theta* (-sin theta)`
`rArr (dx)/(d theta) = tan theta (sec theta + cos theta)`
`and (dy)/(d theta) = n tan theta(sec^(n) theta + cos^(n) theta)`
`rArr (dy)/(dx) = (n (sec^(n)theta+cos^(n) theta))/(sec theta + cos theta)`
`:. ((dy)/(dx))^(2) =(n^(2)(sec^(n)theta+cos^(n) theta)^(2))/((sec theta+ cos theta)^(2))`
`=(n^(2){(sec^(n) theta-cos^(n) theta)^(2)+4})/({(sec theta - cos theta)^(2)+4})=(n^(2)(y^(2)+4))/((x^(2)+4))`
` rArr (x^(2) + 4)((dy)/(dx))^(2) = n^(2) (y^(2)+4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (x^2+4)((dy)/(dx))^2=n^2(y^2+4)

If x=sectheta-tanthetaa n dy=cos e ctheta+cottheta, then prove that x y+1=y-xdot

If x = 2costheta- cos 2theta, y = 2sintheta -sin 2theta, find dy/dx.

(x+a)(dy)/(dx)-2y=(x+a)^(4)

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

Find (dy)/(dx) for y=sin(x^2+1)dot

Solve ((dy)/(dx))=e^(x-y)(e^x-e^y)dot

Solve (dy)/(dx)+2y=e^(-x)

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta