Home
Class 12
MATHS
If y={(log)(cosx)sinx}{(log)(sinx)cosx}^...

If `y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)),fin d(dy)/(dx)a tx=pi/4`

Text Solution

Verified by Experts

The correct Answer is:
`(-8)/(log e^(2))+(32)/(16+pi^(2)) `

Given, `y={(log_(cos x) sin x)*(log_(sin x) cos x)^(-1) + sin ((2x)/(1+x^(2)))}`
` :. " " y= ((log_(e)(sin x))/(log_(e)(cos x)))^(2) + sin ^(-1)((2x)/(1+x^(2)))`
` rArr (dy)/(dx) =2 {(log_(e)(sin x))/(log_(e)(cos x))*(log_(e)(cos x)*cot x + log_(e) ("in "x)*tan x)/({log_(e)(cos x)}^(2))}+2/(1+x^(2))`
`rArr ((dy)/(dx))_((x=pi/4))=2{1*(2*log(1/sqrt2))/((log. 1/sqrt2)^(2))}+2/(1+pi^(2)/16 )`
` = - 8/(log_(e) 2) +32/(16+pi^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

The smallest positive x satisfying the equation (log)_(cosx)sinx+(log)_(sinx)cosx=2 is pi/2 (b) pi/3 (c) pi/4 (d) pi/6

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx) is (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

y = a sinx log_(10)x + e^(2x), find dy/dx.

int_(0)^(pi)(cosx)/(1+sinx)dx=

If y+d/(dx)(x y)=x(sinx+logx),fin dy(x)dot

If f(x)=cos^(-1)(1/sqrt(13))(2cosx-3sinx) +sin^(-1)(1/sqrt(13))(2cosx+3sinx)wdotrdottsqrt(1+x^2), then find (df(x))/(dx) at x=3/4dot

Evaluate int(cosx)/((1-sinx)(2+sinx))dx

Simplify : sin^(-1)((sinx+cosx)/(sqrt(2))),(-pi)/(4)ltxlt(pi)/(4)

(cosx)/((1-sinx)(2-sinx)) [Hint : Put sin x = t]