Home
Class 12
MATHS
given y=(5x)/(3*sqrt(1-x)^2)+cos^2(2x+1)...

given `y=(5x)/(3*sqrt(1-x)^2)+cos^2(2x+1)`,find `dy/dx`

Text Solution

Verified by Experts

The correct Answer is:
`{{:(5/(3(1-x)^(2)) -2 sin (4x+2)"," x lt 1),((-5)/(3(x-1)^(2))-2 sin (4x+2)"," x gt 1 ):}`

Given, ` y = (5x)/(3|1-x|) + cos^(2) (2x+1) `
` rArr" " y={{:((5x)/(3(1-x))+cos^(2)(2x+1)", " x lt1),((5x)/(3(x-1))+cos^(2)(2x+1)", " x gt 1):}`
The function is not defined at x = 1.
` rArr (dy)/(dx) ={{:(5/3{((1-x)-x(-1))/((1-x)^(2))}-2 sin (4x+2)", " x lt1),(5/3{((x-1)-x(1))/((x-1)^(2))}-2 sin (4x+2)", " x gt 1):}`
`rArr (dy)/(dx)={{:(5/(3(1-x)^(2))-2 sin (4x+2)", " x lt 1),(-5/(3(x-1)^(2))-2 sin (4x=2)", " x gt 1):}`
Promotional Banner

Similar Questions

Explore conceptually related problems

Given y=(5x)/(3sqrt((1-x)^2 ))+sin^2(2x+1), (dy)/(dx)

For x^(2)+y^(2)=1 find dy/dx

For x^(2)+y^(2)=1 find dy/dx

Given y=cos^(-1)((1-x^(2))/(1+x^(2))) find (dy)/(dx)

If y = sqrt((x-1)(x-2)(x-3)), find dy/dx.

y = sec^(-1)((1+x^(2))/(1-x^(2))), find dy/dx.

Find int(1)/(sqrt(5x^(2)-2x))dx .

y = tan^(-1)((3x-x^(3))/(1-3x^(2))), find dy/dx.

y = tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))),find dy/dx.