Home
Class 12
MATHS
Let f: RvecR be a continuous odd functio...

Let `f: RvecR` be a continuous odd function, which vanishes exactly at one point and `f(1)=1/2dot` Suppose that `F(x)=int_(-1)^xf(t)dtfora l lx in [-1,2]a n dG(x)=int_(-1)^x t|f(f(t))|dtfora l lx in [-1,2]dotIf(lim)_(xvec1)(F(x))/(G(x))=1/(14),` Then the value of `f(1/2)` is

Text Solution

Verified by Experts

The correct Answer is:
7

Here, `underset( x to 1) lim (F(x))/(G(x)) = 1/14 `
` rArr" " underset( x to 1) lim (F'(x))/(G'(x)) = 1/14 ` [using L'Hospital's rule] …(i)
As ` F(x) = int_(-1)^(x) f(t) dt rArr F'(x) = f(x) ` …(ii)
and ` G(x) = int_(-1)^(x) t|f{f(t)}| dt `
` rArr" " G'(x) = x |f{f(x)}|` ....(iii)
` :." " underset( x to 1) lim (F(x))/(G(x)) = underset( x to 1) lim (F'(x))/(G'(x)) = underset( x to 1) lim (f(x))/(x|f{f(x)}|) = (f(1))/(1|f{f(1)}|)= (1//2)/(|f(1//2)|) ` ...(iv)
Given, ` underset( x to 1) lim (F(x))/(G(x)) = 1/14 `
` :." " (1/2)/(|f(1/2)|) = 1/14 rArr |f(1/2)|= 7`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f: RvecR be a continuous function which satisfies f(x)= int_0^xf(t)dtdot Then the value of f(1n5) is______

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

Let ("lim")_(x to1)(x^a-a x+a-1)/((x-1)^2)=f(a)dot Then the value of f(4) is _________

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

If f(x)=1+1/x int_1^x f(t) dt, then the value of (e^-1) is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

Iff(x)=e^(g(x))a n dg(x)=int_2^x(tdt)/(1+t^4), then find the value of f^(prime)(2)

If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is