Home
Class 12
MATHS
The value of the expression ""^(47)C(4) ...

The value of the expression `""^(47)C_(4) + sum_(i=1)^(5) ""^(52-i)C_(3)` is

A

`""^(47)C_(5)`

B

`""^(52)C_(5)`

C

`""^(52)C_(4)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

Here, `""^(47)C_(4) + overset(5)underset(j = 1)sum ""^(52 - j)C_(3)`
`= ""^(47)C_(4) + ""^(51)C_(3) + ""^(50)C_(3) + ""^(49)C_(3) + ""^(48)C_(3) + ""^(47)C_(3)`
`= (""^(47)C_(4) + ""^(47)C_(3)) + ""^(48)C_(3) + ""^(49)C_(3) + ""^(50)C_(3) + ""^(51)C_(3)`
[using `""^(n)C_(r) + ""^(n)C_(r -1) = ""^(n + 1)C_(r)`]
`= (""^(48)C_(4) + ""^(48)C_(3)) + ""^(49)C_(3) + ""^(50)C_(3) + ""^(51)C_(3)`
`= (""^(49)C_(4) + ""^(49)C_(3)) + ""^(50)C_(3) + ""^(51)C_(3)`
`= (""^(50)C_(4) + ""^(50)C_(3)) + ""^(51)C_(3)`
`= ""^(51)C_(4) + ""^(51)C_(3) = ""^(52)C_(4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ""^(50)C_(4)+sum_(r=1)^(6)""^(56-r)C_(3) is

The value of expression .^47 C_4+sum_(j=1)^5.^(52-j)C_3 is equal to a. .^47 C_5 b. .^52 C_5 c. .^52 C_4 d. none of these

The value of the expansion (sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=

The value of sum_(r=0)^(3) ""^(8)C_(r)(""^(5)C_(r+1)-""^(4)C_(r)) is "_____" .

The number of real solution of the equation sin^(-1) (sum_(i=1)^(oo) x^(i +1) -x sum_(i=1)^(oo) ((x)/(2))^(i)) = (pi)/(2) - cos^(-1) (sum_(i=1)^(oo) (-(x)/(2))^(i) - sum_(i=1)^(oo) (-x)^(i)) lying in the interval (-(1)/(2), (1)/(2)) is ______. (Here, the inverse trigonometric function sin^(-1) x and cos^(-1) x assume values in [-(pi)/(2), (pi)/(2)] and [0, pi] respectively)

The value of sum_(0leiltjle5) sum(""^(5)C_(j))(""^(j)C_(i)) is equal to "_____"

The value of sum_(i=1)^(13) (n^(n) + i^(n-1)) is

The value of (1 + i)^(4) + (1 -i)^(4) is

If a ,b ,c are non-zero real numbers, then the minimum value of the expression (((a^4+ 3a^2+1)(b^4+5b^2+1)(c^4+7c^2+1))/(a^2b^2c^2)) is not divisible by prime number.