Home
Class 12
MATHS
Let A be a set of n distinct elements. T...

Let `A` be a set of `n` distinct elements. Then the total number of distinct function from `AtoA` is ______ and out of these, _____ are onto functions.

Text Solution

Verified by Experts

The correct Answer is:
`n^(n), overset(n)underset(r = 1)sum(-1)^(n - r) " "^(n)C_(r) (r)^(n)`

Let `A = {x_(1), x_(2),..,x_(n)}`
`therefore` Number of functions from A to A is `n^(n)` and out of these `overset(n) underset(r - 1)sum (-1)^(n-r)" "^(n)C_(r) (r)^(n)` are onto functions.
Promotional Banner

Similar Questions

Explore conceptually related problems

A set has n elements, then the total number of subsets of A is

Let A and B be two sets having m and n elements respectively . Then total number of functions from A to B is

Let E={1,2,3,4,} and F={1,2}. Then the number of onto functions from E to F, is ______.

Let X be a set with exactly 5 elements and Y be a set with exactly 7 elements. If alpha is the number of one-one function from X to Y and beta is the number of onto function from Y to X , then the value of 1/(5!)(beta-alpha) is _____.

If a set A has n elements, then the total number of subset of A or the number of elements in the power set of A

A binary operation on a set S is a function from

_________ and ______ properties of the elements are the periodic function of their _______ numbers.