Home
Class 12
MATHS
The number of real solutions of tan^(-1)...

The number of real solutions of `tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+x+1)=pi/2` is

A

zero

B

one

C

two

D

infinite

Text Solution

Verified by Experts

The correct Answer is:
C

Given function is
`tan^(-1)sqrt(x(x+1)) + sin ^(-1)sqrt(x^(2) + x + 1) = (pi)/(2)`
Function is defined, if
(i) `x (x + 1) ge 0`, since domain of square root function.
(ii) `x^(2) + x + 1 ge 0`, since domain of square root function.
(iii) ` sqrt(x^(2) + x + 1) le 1`, since domain of `sin ^(-1)` function.
From (ii) and (iii)`, 0 le x^(2) + x + 1 le 1 nn x^(2) + x ge 0`
`rArr " " 0 le x ^(2) + x + 1 le 1 nn x^(2) + x + 1 ge 1`
`rArr " " x ^(2) + x + 1 = 1 `
`rArr " " x^(2) + x = 0`
`rArr " " x(x+1) =0`
`rArr " " x=0, x =-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of real solutions of sqrt(2x-4)-sqrt(x+5)=1 is

Find the real solutions of the eqution tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

Number of real solutions of sqrt(x)+sqrt(x-sqrt(1-x))=1 is

The number of real solution of the equation tan^(-1) sqrt(x^2-3x +7) + cos^(-1) sqrt(4x^2-x + 3) = pi is

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is (a)0 (b) -1 (c) 1 (d) 2

The number of real solution of the equation tan^(-1) sqrt(x^(2) - 3x + 2) + cos^(-1) sqrt(4x - x^(2) -3) = pi is

The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5) is

The number of real solution of the equation sqrt(1+cos2x)=sqrt2 sin^(-1)(sinx),-piltxltpi"is"

The solution of sin^(-1)|sin x|=sqrt(sin^(-1)|sin x|) is

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is 2 (b) 3 (c) 1 (d) 0