Home
Class 12
MATHS
If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^...

If `sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2` for `0<|x|

A

`1//2`

B

`1`

C

`-1//2`

D

`-1 `

Text Solution

Verified by Experts

The correct Answer is:
B

We know that, ` sin ^(-1) ( alpha) + cos ^(-1) ( alpha ) = ( pi)/(2)`
Therefore, ` alpha ` should be equal in both functions.
`therefore x - ( x^(2))/( 2) + ( x ^(3))/(4) - … = x ^(2) - (x ^(4))/( 2) + (x ^(6))/( 4) - … `
`rArr (x)/( 1+ (x)/(2)) = ( x^(2))/( 1 + (x^(2))/( 2)) rArr (x)/(( 2+ x )/( 2)) = (x^(2))/(( 2+ x ^(2))/( 2 ))`
`rArr 2x ( 2 + x ^(2)) = 2x ^(2 ) (x + x )`
` rArr " " 4x + 2 x ^(3) = 4x ^(2) + 2x ^(3)`
`rArr " " x ( 4 + 2x ^(2) - 4x - 2x ^(2)) = 0`
`rArr ` Either ` x = 0 or 4- 4x = 0 `
`rArr x = 0 or x = 1 `
` because 0lt |x| lt sqrt2`
`therefore x= 1 and x ne 0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(- 1)(x-(x^2)/2+(x^3)/4-.....)+cos^(- 1)(x^2-(x^4)/2+(x^6)/4-.....)=pi/2 for 0 lt |x| lt sqrt2 then x=

The number of values of x for which sin^(-1)(x^2-(x^4)/3+(x^6)/9)+cos^(-1)(x^4-(x^8)/3+(x^(12))/9ddot)=pi/2, where 0lt=|x|

Solve : tan^(-1) ((x-2)/(x-3)) + tan^(-1) ((x+2)/(x+3)) = pi/4

(x+1)(x-3)(x+2)(x-4)+6=0

Let f:[-pi/3,(2pi)/3]vec[0,4] be a function defined as f(x)=sqrt(3)sinx-cosx+2. Then f^(-1)(x) is given by (a) sin^(-1)((x-2)/2)-pi/6 (b) sin^(-1)((x-2)/2)+pi/6 (c) (2pi)/3+cos^(-1)((x-2)/2) (d) none of these

Evaluate: ("lim")_(xrarr0)8/(x^8){1-cos((x^2)/2)-cos((x^2)/4)+cos((x^2)/2)cos((x^2)/4)}

If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equal to

If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)sin 14)=pi/2, t h e n the value of sin^(-1)sin2x is

If cos^(-1).(x)/(2) + cos^(-1).(y).(3) = (pi)/(6) , then prove that (x^(2))/(4) - (xy)/(2sqrt3) + (y^(2))/(9) = (1)/(4)

Evaluate lim_(xto0) (8)/(x^(8)){1-"cos"(x^(2))/(2)-"cos"(x^(2))/(4)+"cos"(x^(2))/(2)"cos"(x^(2))/(4)}.