Home
Class 12
MATHS
Let a=hat(i)+hat(j)+sqrt(2)hat(k),b=b(1...

Let `a=hat(i)+hat(j)+sqrt(2)hat(k),b=b_(1)hat(i)+b_(2)hat(j)+sqrt(2)hat(k)` and `c=5hat(i)+hat(j)+sqrt(2)hat(k)` be three vectors such that the projection vector of b on a is a. If `a+b` is perpendicular to c, then `|b|` is equal to

A

6

B

4

C

`sqrt(22)`

D

`sqrt(32)`

Text Solution

Verified by Experts

The correct Answer is:
B

According to given information we have the following figure

Clearly projection of b on a = `(b. a)/(|a|)`
`=((b_(1)hat(i) +b_(2)hat(j) +sqrt(2hat(k)))(hat(i)+hat(j)+ sqrt(2)hat(k)))/(sqrt(1^(2)+1^(2)+(sqrt(2))^(2)))`
`=(b_(1)+b_(2)+2)/(sqrt(4))=(b_(1)+b_(2)+2)/(2)`
but projection of b on a =`|a|`
`:. (b_(1)+b_(2)+2)/(2) = sqrt(1^(2) +1^(2) +(sqrt(2))^(2)`
`rArr (b_(1)+b_(2)+2)/(2) =2 rArr b_(1)+b_(2) =2`
Now `a+b=(hat(i)+hat(j)+sqrt(2)hat(k)) + (b_(1)hat(i)+ b_(2)hat(j) +_ sqrt(2)hat(k))`
`=(b_(1)+1)hat(i)+ (b_(2)+1)hat(j)+ 2sqrt(2)hat(k)`
`:' (a+b) bot c ` therefore (a+b) .c =0
`rArr {(b_(1) +1) hat(i) +(b_(2) +1) hat(j) +2sqrt(2)hat(k)} (5hat(i)+hat(j)+sqrt(2)hat(k)) =0`
`rArr 5(b_(b_(1) +1) (b_(2)+1) +2sqrt(2)) =0`
`rArr " " 5b_(1) + b_(2)=-10`
From Eqs (i) and (ii) `b_(1) =-3` and `b_(2) =5`
`rArr b=- 3hat(i) +5hat(j) +sqrt(2)hat(k)`
`rArr |b| =sqrt((-3)^(2) +(5)^(2)+(sqrt(2))^(2))=sqrt(36) =6`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a= hat(i) + 2hat(j) + 4hat(k) " " b= hat(i) + lambda hat(j) +4hat(k) and c= 2hat(i) +4hat(j)+(lambda^(2)-1) hat(k) be coplanar vectors . Then the non-zero vectors axx c is

Prove that the vectors vec a= hat i+ 2 hat j +3 hat k and vec b=2 hat i- hat j are perpendicular.

Prove that the vectors vec a = 3 hat i + hat j +3 hat k and vec b = hat i - hat k are perpendicular.

Let a=3hat(i) +2hat(j) +2hat(k) " and " b=hat(i) +2hat(j) -2hat(k) be two vectors. If a vectors perpendicular to both the vectors a+b and a-b has the megnitude 12 ,then one such vectors is

If the vectors 3 hat i + lambda hat j + hat k and 2 hat i - hat j + 8 hat k are perpendicular, then lambda is

A vector perpendicular to both hat(i) + hat(j) + hat(k) and 2hat(i) + hat(j) + 3hat(k) is,

If vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=hat(i)+2hat(j)-5hat(k),vec(c)=3hat(i)+5hat(j)-hat(k), then a vector perpendicular to vec(a) and lies in the plane containing vec(b)andvec(c) is

Two vectors vec(A) = hat(i) + 2 hat(j) + 2 hat(k) and vec(B) = hat(i) + 3 hat(j) + 6 hat(k) find . their dot products,

Let a= hat(i) - hat(j) , b=hat(i) + hat(j) + hat(k) and c be a vector such that axx c + b=0 " and " a. c =4, then |c|^(2) is equal to