Home
Class 12
MATHS
Let O be the origin and let PQR be an a...

Let O be the origin and let PQR be an arbitrary triangle the point S is such that
`vec(OP) . vec(OQ) + vec(OR).vec(OS)= vec(OR) -vec(OP)+vec(OQ).vec(OS).`
`=vec(OQ). vec(OR).vec(OP).vec(OS)`then the trianle PQR has S has S as its

A

centroid

B

orthocentre

C

incentre

D

circumcentre

Text Solution

Verified by Experts

The correct Answer is:
B

OP .OQ +OR . OS =OR .OP + OQ. OS
`rArr OP (OQ- OR) +OS (OR -OQ) =0`
`rArr (OP-OS) (OQ- OR) =0`
`rArr SP. RQ =0`
Similarly SR. PQ= 0 and SQ . PR =0
`:. `S is orthocentre .
Promotional Banner

Similar Questions

Explore conceptually related problems

Let O be the origin and let PQR be an arbitrary triangle. The point S is such that bar(OP)*bar(OQ)+bar(OR)*bar(OS)=bar(OR)*bar(OP)+bar(OQ)*bar(OS)=bar(OQ)*bar(OR)+bar(OP)*bar(OS) Then the triangle PQR has S as its

Prove that [vec(a)+vec(b)+vec(c),vec(b)+vec(c),vec(c)]=[vec(a)vec(b)vec(c)]

Prove that (vec(a). (vec(b) xx vec(c)) vec(a) = (vec(a) xx vec(b)) xx (vec(a) xx (c)) .

If O( vec0 ) is the circumcentre and O' the orthocentre of a triangle ABC, then prove that i. vec(OA)+vec(OB)+vec(OC)=vec(OO') ii. vec(O'A)+vec(O'B)+vec(O'C)=2vec(O'O) iii. vec(AO')+vec(O'B)+vec(O'C)=2 vec(AO)=vec(AP) where AP is the diameter through A of the circumcircle.

If vec(PO) + vec(OQ) = vec(QO) + vec(OR) prove that the points P,Q,R are collinear .

If vec(A) + vec(B) +vec(C)=0, "then" vec(A) xx vec(B) is :

If vec(PO)+vec(OQ)=vec(QO)+vec(OR) , prove that the points P, Q,R, are collinear.

If vec(a)*vec(b)=vec(b)*vec(c),vec(a)=0, then the value of [vec(a),vec(b),vec(c)] is

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=