Home
Class 12
MATHS
Let overset(to)(u),overset(to)(v) " and ...

Let `overset(to)(u),overset(to)(v) " and " overset(to)(w)` be vectors such that `overset(to)(u)+overset(to)(v)+overset(to)(w)=overset(to)(0).` If `|overset(to)(u)|=3.|overset(to)(v)|=4" and " |overset(to)(w)|=5 " then " overset(to)(u).overset(to)(v)+overset(to)(v).overset(to)(w)+overset(to)(w).overset(to)(u)` is

A

47

B

-25

C

0

D

25

Text Solution

Verified by Experts

The correct Answer is:
B

Since `vec(u) +vec(v)+vec(w) =vec(0) rArr |vec(u)+vec(v)+vec(w)|^(2)=0`
`rArr |vec(u)|^(2)+|vec(v)|^(2)+|vec(w)|^(2)(vec(u)". "vec(v)+vec(v)". "vec(w) +vec(w) ". " vec(u))=0`
`rArr 9+ 16 + 25 +2 (vec(u)". " vec(v) + vec(w) ". " vec(w) +vec(w) ". " vec(u)) =0`
`rArr vec(u) ". " vec(v)+ vec(v)". " vec(w) + vec(w) + vec(w) ". " vec(u)=-25`
Promotional Banner

Similar Questions

Explore conceptually related problems

For any three vectors overset(to)(a), overset(to)(b) " and " overset(to)(C ) (overset(to)(a) - overset(to)(b)). {(overset(to)(b)-overset(to)(c))xx(overset(to)(c)-overset(to)(a))} = 2overset(to)(a).(overset(to)(b)xx overset(to)(c))

if overset(to)(a), overset(to)(b) " and " overset(to)(c ) are unit vectors satisfying |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)(c)|^(2)+|overset(to)(c)-overset(to)(a)|^(2)=9 |2overset(to)(a) +5overset(to)(b)+5overset(to)(c)| is equal to

Let overset(to)(a),overset(to)(b),overset(to)(c ) be unit vectors such that overset(to)(a)+overset(to)(b)+overset(to)(c ) = overset(to)(0). Which one of the following is correct ?

If overset(to)(A), overset(to)(B), overset(to)(C ) three non-coplanar vectors then (overset(to)(A) ,(overset(to)(B)xxoverset(to)(C)))/((overset(to)(C)xx overset(to)(A)). overset(to)(B))+ (overset(to)(B).(overset(to)(A) xx overset(to)(C)))/(overset(to)(C).(overset(to)(A)xx overset(to)(B)))=.........

Let overset(to)(A),overset(to)(B)" and " overset(to)(C ) be unit vectors . If overset(to)(A).overset(to)(B) = overset(to)(A).overset(to)(C ) =0 and that the angle between overset(to)(B) " and " overset(to)(C )" is " pi//6. Then overset(to)(A) =+-2 (overset(to)(B)xxoverset(to)(C ))

If overset(to)(X) "." overset(to)(A) =0, overset(to)(X) "." overset(to)(B) =0, overset(to)(X) "." overset(to)(C ) =0 for some non-zero vector overset(to)(X) " then " [overset(to)(A) overset(to)(B) overset(to)(C )]=0

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

If overset(to)(a),overset(to)(b),overset(to)(c ),overset(to)(d) are four distinct vectors satisfying the conditions overset(to)(a)xxoverset(to)(b)=overset(to)(c )xx overset(to)(d) " and " overset(to)(a)xxoverset(to)(c ) = overset(to)(b)xx overset(to)(d) then prove that , overset(to)(a).overset(to)(b)+overset(to)(c ). overset(to)(d) ne overset(to)(a). overset(to)(c)+overset(to)(b).overset(to)(d) .

find 3- dimensional vectors overset(to)(v)_(1) , overset(to)(v)_(2), overset(to)(v)_(3) satisfying overset(to)(v)_(1).overset(to)(v)_(1) =4, overset(to)(v)_(1).overset(to)(v)_(2)=-2overset(to)(v)_(1).overset(to)(v)_(3)-6 overset(to)(v)_(2).overset(to)(v)_(2)=2,overset(to)(v)_(2).overset(to)(v)_(3) =-5 , overset(to)(v)_(3).overset(to)(v)_(3)=29

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then