Home
Class 12
MATHS
Suppose that vec p,vecqand vecr are thr...

Suppose that `vec p,vecqand vecr` are three non- coplaner in `R^(3)` ,Let the components of a vector`vecs` along `vecp , vec q and vecr` be 4,3, and 5, respectively , if the components this vector `vec s` along `(-vecp+vec q +vecr),(vecp-vecq+vecr) and (-vecp-vecq+vecr)` are x, y and z , respectively , then the value of `2x+y+z` is

Text Solution

Verified by Experts

The correct Answer is:
`(9)`

Here `s= 4P + 3q +5r`
and `s= (-P+q+r )x+ (p-q+r) y+(-P-q+r) z ……(1)`
` :. 4p+3q+5r =p (-x+y-z) +q(x-y+z)+ r(x+y+z)`
On comparing both sides we get
`-x+y -z= 4, x -y =3 " and " x+y+z=6`
On solving above equations we get
`x= 4 , y= (9)/(2), =(-7)/(2)`
`:. 2x +y+ z=8 + (9)/(2)- (7)/(2) = 9`
Promotional Banner

Similar Questions

Explore conceptually related problems

If the projections of vector vec a on x -, y - and z -axes are 2, 1 and 2 units ,respectively, find the angle at which vector vec a is inclined to the z -axis.

The component of position vector vecr along x - axis will maximum value if

If three points (2 vecp-vecq+3 vecr),(vecp-2 vecq+alpha vecr) and (beta vecp-5 vecq) (where vecp, barq, vecr are non-coplanar vectors) are collinear, then the value of 1/(alpha+beta) is

If vecP=mvecV then the direction of vecP along

For any vector prove that vecr=(vecr.veci)i+(vecr.vecj)j+(vecr.veck)k

If vec a , vec b and vec c are non-coplanar vectors, prove that vectors 3vec a-7 vec b-4 vec c ,3 vec a -2 vec b+ vec c and vec a + vec b +2 vec c are coplanar.

Vectors vec a and vec b are non-collinear. Find for what value of n vectors vec c=(n-2) vec a+ vec b and vec d=(2n+1) vec a- vec b are collinear?

If veca and vecb are othogonal unit vectors, then for a vector vecr non - coplanar with veca and vecb vector vecr xx veca is equal to

vec u , vec va n d vec w are three non-coplanar unit vecrtors anf alpha,betaa n dgamma are the angles between vec ua n d vec v , vec va n d vec w ,a n d vec wa n d vec u , respectively, and vec x , vec ya n d vec z are unit vectors along the bisectors of the angles alpha,betaa n dgamma , respectively. Prove that [ vec xxx vec y vec yxx vec z vec zxx vec x]=1/(16)[ vec u vec v vec w]^2sec^2alpha/2sec^2beta/2sec^2gamma/2dot

If vec a, vec b and vec c are mutually perpendicular unit vectors such that x bara-y vecb+vecc-2 hati=vec0, x, y in R , then the value of x^2+y^2 is