Home
Class 12
MATHS
if overset(to)(a), overset(to)(b) " and ...

if `overset(to)(a), overset(to)(b) " and " overset(to)(c )` are unit vectors satisfying
`|overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)(c)|^(2)+|overset(to)(c)-overset(to)(a)|^(2)=9`
`|2overset(to)(a) +5overset(to)(b)+5overset(to)(c)|` is equal to

Text Solution

Verified by Experts

The correct Answer is:
`(3)`

PLAN if a b, c are any three vectors
Then `|vec(a)+vec(b)+vec(c )|^(2) ge 0`
`rArr |vec(a)|^(2) + |vec( c)|^(2) + 2(vec(a) ". " vec(b) + vec(b)"."+vec(c )"." vec(a)) ge 0`
` :. , vec(a)". " vec(b)+ vec(b) "." vec(c ) + vec(c ) ". " vec(a) ge (-1)/(2) (|vec(a)|^(2)+|bec(b)|^(2) + |vec(b)|^(2))`
Given `|vec(a) -vec(b)|^(2)+ |vec(b)-vec(c )|^(2) + |vec( c)-vec(a)|^(2) =9`
`rArr |vec(a) |^(2) + |vec(b)|^(2)-2vec(a) "." vec(b) + |vec(b) + |vec(b)|^(2) + |vec(c )|^(2) =2 vec(b)". " vec( c )+ |vec(c )|^(2)+ |vec(a)|^(2)`
`-2 vec( c) "." vec(a)=9`
`rArr 6-2 (vec(a) ". " vec(b) + vec(b)". " vec(c ) +vec(c ).". " vec(a)) =9 [:' |vec(a)|= |vec(b)|=|vec(c )|=1]`
`rArr vec(a)". " bec(b) + vec(b) "." vec(c ) + vec( c) ". " vec(a) = - (3)/(2)`
Also `vec(a) ". " vec(b) + vec(b) "." vec(c ) + vec( c) ". " vec(a) ge (-1)/(2) (|vec(a)|^(2)+|vec(b)|^(2)+|vec(c )|^(2))`
` ge-(3)/(2) `
From Eqs. (i) and (ii) `|vec(a)+vec(b) +vec(c ) |=0`
as`vec(a) "." vec(b) + vec(b) "." vec(c ) + vec(c ) "." vec(a)` is minimum when `|vec(a) + vec(b) + vec( c)|=0`
`rArr vec(a) + vec(b) +vec( c) =0`
`:. |2 a+5 b + 5c|=|2a +5 (b+c ) |=|2a -5a|=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

If overset(to)(a) , overset(to)(b) " and " overset(to)( c) are unit coplanar vectors then the scalar triple product [2 overset(to)(a) - overset(to)(b), 2 overset(to)(b) - overset(to)(c ) ,2 overset(to)(c ) - overset(to)(a)] is

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

For any three vectors overset(to)(a), overset(to)(b) " and " overset(to)(C ) (overset(to)(a) - overset(to)(b)). {(overset(to)(b)-overset(to)(c))xx(overset(to)(c)-overset(to)(a))} = 2overset(to)(a).(overset(to)(b)xx overset(to)(c))

The scalar overset(to)(A) .[(overset(to)(B) + overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

if overset(to)(b) " and " overset(to)(c ) are any two non- collinear unit vectors and overset(to)(a) is any vector then (overset(to)(a).overset(to)(b))overset(to)(b).(overset(to)(a).overset(to)(c )) overset(to)(c ) + .(overset(to)(a).(overset(to)(b)xxoverset(to)(c)))/(|overset(to)(b)xxoverset(to)(c)|^(2)).(overset(to)(b)xxoverset(to)(c))=.........

If overset(to)(a),overset(to)(b),overset(to)(c ),overset(to)(d) are four distinct vectors satisfying the conditions overset(to)(a)xxoverset(to)(b)=overset(to)(c )xx overset(to)(d) " and " overset(to)(a)xxoverset(to)(c ) = overset(to)(b)xx overset(to)(d) then prove that , overset(to)(a).overset(to)(b)+overset(to)(c ). overset(to)(d) ne overset(to)(a). overset(to)(c)+overset(to)(b).overset(to)(d) .

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

Let overset(to)(u),overset(to)(v) " and " overset(to)(w) be vectors such that overset(to)(u)+overset(to)(v)+overset(to)(w)=overset(to)(0). If |overset(to)(u)|=3.|overset(to)(v)|=4" and " |overset(to)(w)|=5 " then " overset(to)(u).overset(to)(v)+overset(to)(v).overset(to)(w)+overset(to)(w).overset(to)(u) is

If overset(to)(A), overset(to)(B), overset(to)(C ) three non-coplanar vectors then (overset(to)(A) ,(overset(to)(B)xxoverset(to)(C)))/((overset(to)(C)xx overset(to)(A)). overset(to)(B))+ (overset(to)(B).(overset(to)(A) xx overset(to)(C)))/(overset(to)(C).(overset(to)(A)xx overset(to)(B)))=.........

Let overset(to)(a),overset(to)(b),overset(to)(c ) be unit vectors such that overset(to)(a)+overset(to)(b)+overset(to)(c ) = overset(to)(0). Which one of the following is correct ?