Home
Class 12
MATHS
Let a=3hat(i) +2hat(j) +2hat(k) " and "...

Let `a=3hat(i) +2hat(j) +2hat(k) " and " b=hat(i) +2hat(j) -2hat(k)` be two vectors. If a vectors perpendicular to both the vectors a+b and a-b has the megnitude 12 ,then one such vectors is

A

`4(2hat(i)+2hat(j)+hat(k))`

B

`4(2hat(i)-2hat(j)-hat(k))`

C

`4(2hat(i)+2hat(j)-hat(k))`

D

`4(-2hat(i)-2hat(j)+hat(k))`

Text Solution

Verified by Experts

The correct Answer is:
B

Given vectors are
` a= 3hat(i) + 2hat(j) + 2hat(k) " and " b= hat(j) + 2hat(j) - 2hat(k)`
Now vectors a+b `=4hat(j) " and " a-b =2hat(i) +4hat(k)`
`:. `A vector which is perpendicular to both the vectors a+b and a-b is
` (a+b) xx (a-b) = |{:(hat(i) ,,hat(j) ,,hat(k) ),(4,,4,,0),(2,,0,,4):}|`
`=hat(i) (16) -hat(j) (16) +hat(k)(-8) =8(2hat(i) -2hat(j) -hat(k))`
Then the required vector along `(a+b) xx (a-b)` having magnitude 12 is
`+- 12 xx (8(2hat(i) -2hat(j) -hat(k)))/(8xx sqrt(4+4+1)) = +- 4(2hat(i) -2hat(j) - hat(k))`
Promotional Banner

Similar Questions

Explore conceptually related problems

A unit vector perpendicular to the vectors veca = 2 hat i - 6 hat j - 3 hat k and vec b = 4 hat i + 3 hat j - hat k is

The number of vectors of unit length perpendicular to the vectors vec a = 2 hat i + hat j + 2 hat k and vec b = hat j + hat k is

Find a unit vector perpendicular to each of the vector vec a = hat i - 2 hat j + 3 hat k and vec b = hat i + 2hat j - hat k .

Given vec a = 4 hat i - hat j + 3 hat k and vec b = -2 hat i + hat j - 2 hat k . (i) Find a unit vector perpendicular to both vec a and vec b . (ii) Find a vector of magnitude 9 which is perpendicular to both vec a and vec b .

A vector perpendicular to both hat(i) + hat(j) + hat(k) and 2hat(i) + hat(j) + 3hat(k) is,

Two vectors vec(A) = hat(i) + 2 hat(j) + 2 hat(k) and vec(B) = hat(i) + 3 hat(j) + 6 hat(k) find . their dot products,

Two vectors vec(A) = hat(i) + 2 hat(j) + 2 hat(k) and vec(B) = hat(i) + 3 hat(j) + 6 hat(k) find . angle between them .

Find a unit vector in the direction of the vector vec a = 2 hat i + 2 hat j + hat k .