Home
Class 12
MATHS
Let overset(to)(a),overset(to)(b),overse...

Let `overset(to)(a),overset(to)(b),overset(to)(c )` be unit vectors such that `overset(to)(a)+overset(to)(b)+overset(to)(c ) = overset(to)(0).`
Which one of the following is correct ?

A

`overset(to)(a)xxoverset(to)(b)=overset(to)(b)xxoverset(to)(c)=overset(to)(c)xxoverset(to)(a)=overset(to)(0)`

B

`overset(to)(a)xxoverset(to)(b)=overset(to)(b)xxoverset(to)(c)=overset(to)(c)xxoverset(to)(a)neoverset(to)(0)`

C

`overset(to)(b)xxoverset(to)(b)=overset(to)(b) xx overset(to)(c) =overset(to)(a)xxoverset(to)(c)=overset(to)(0)`

D

`overset(to)(a)xxoverset(to)(b),overset(to)(b)xxoverset(to)(c),overset(to)(c)xxoverset(to)(a)` are mutually perpendicular

Text Solution

Verified by Experts

The correct Answer is:
B

Since `vec(a) ,vec(b) , vec( c) ` are unit vectors and `vec(a) + vec(b) + vec( c) =vec(0)` then `vec(a) , vec(b) , vec( c) ` represent and aquilateral triangle .
`:. , vec(a) xx vec(b) = vec(b) xx vec(c ) = vec(c ) xx vec(a) be vec(0) `
Promotional Banner

Similar Questions

Explore conceptually related problems

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

Let overset(to)(A),overset(to)(B)" and " overset(to)(C ) be unit vectors . If overset(to)(A).overset(to)(B) = overset(to)(A).overset(to)(C ) =0 and that the angle between overset(to)(B) " and " overset(to)(C )" is " pi//6. Then overset(to)(A) =+-2 (overset(to)(B)xxoverset(to)(C ))

If overset(to)(a) " and " overset(to)(b)_(1) are two unit vectors such that overset(to)(a) +2overset(to)(b) and 5overset(to)(a) -4overset(to)(b) are perpendicular to each other then the angle between overset(to)(a) " and " overset(to)(b) is

Let overset(to)(u),overset(to)(v) " and " overset(to)(w) be vectors such that overset(to)(u)+overset(to)(v)+overset(to)(w)=overset(to)(0). If |overset(to)(u)|=3.|overset(to)(v)|=4" and " |overset(to)(w)|=5 " then " overset(to)(u).overset(to)(v)+overset(to)(v).overset(to)(w)+overset(to)(w).overset(to)(u) is

Let vec(A),vec(B),vec(C ) be vectors of length 3, 4, 5, respectively Let overset(to)(A) be perpendicular to overset(to)(B) +overset(to)(C ) , overset(to)(B) " to " overset(to)( C) + overset(to)(A) " and " overset(to)(C ) to overset(to)(A) +overset(to)(B) then the length of vector overset(to)(A) +overset(to)(B)+overset(to)(C ) is .......

If overset(to)(a) , overset(to)(b) " and " overset(to)( c) are unit coplanar vectors then the scalar triple product [2 overset(to)(a) - overset(to)(b), 2 overset(to)(b) - overset(to)(c ) ,2 overset(to)(c ) - overset(to)(a)] is

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

A,B,C and d are four points in a plane with position vectors overset(to)(a),overset(to)(b),overset(to)(c ) and overset(to)(d) respectively such that (overset(to)(a)-overset(to)(d)).(overset(to)(b)-overset(to)(c))=(overset(to)(b)-overset(to)(d))(overset(to)(c)-overset(to)(a))=0 The point D then is the .... of the DeltaABC

If overset(to)(a),overset(to)(b),overset(to)(c ),overset(to)(d) are four distinct vectors satisfying the conditions overset(to)(a)xxoverset(to)(b)=overset(to)(c )xx overset(to)(d) " and " overset(to)(a)xxoverset(to)(c ) = overset(to)(b)xx overset(to)(d) then prove that , overset(to)(a).overset(to)(b)+overset(to)(c ). overset(to)(d) ne overset(to)(a). overset(to)(c)+overset(to)(b).overset(to)(d) .

The scalar overset(to)(A) .[(overset(to)(B) + overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals