Home
Class 12
MATHS
If the vectors overset(to)(a) , overset...

If the vectors `overset(to)(a) , overset(to)(b) " and " overset(to)( c)` from the sides BC,CA and AB respectively of a`DeltaABC` then

A

`overset(to)(a),overset(to)(b)+overset(to)(b).overset(to)(c)+overset(to)(c).overset(to)(a)=0`

B

`overset(to)(a)xxoverset(to)(b)=overset(to)(b)xxoverset(to)(c)=overset(to)(c)xxoverset(to)(a)`

C

`overset(to)(a).overset(to)(b)=overset(to)(b).overset(to)(c)=overset(to)(c).overset(to)(a)`

D

`overset(to)(a)xxoverset(to)(b)+overset(to)(b)xxoverset(to)(c)+overset(to)(c)xxoverset(to)(a)=overset(to)(0)`

Text Solution

Verified by Experts

The correct Answer is:
B

By triangle law `vec(a) + vec(b) + vec(c ) =vec(0)`

Taking cross product by `vec(a) , vec( b),vec( c)` respectively
`vec(a) xx (vec(a) + vec(b) + vec( c) ) = vec(a) xx vec(0) = vec(0)`
`rArr vec(a) xx vec(a) + vec(a) xx vec(b)+ vec(a) xx vec(c ) =vec(a)`
`rArr vec(a) xx vec(b) =vec(c ) xx vec(a)`
Similarly `vec(a) xx vec(b) = vec(b) xx vec(a)`
` :. vec(a) xx vec(b) = vec(b) xx vec(a)`
Promotional Banner

Similar Questions

Explore conceptually related problems

For any three vectors overset(to)(a), overset(to)(b) " and " overset(to)(C ) (overset(to)(a) - overset(to)(b)). {(overset(to)(b)-overset(to)(c))xx(overset(to)(c)-overset(to)(a))} = 2overset(to)(a).(overset(to)(b)xx overset(to)(c))

Let overset(to)(a) , overset(to)(b) " and " overset(to)( c) be three non-zero vectors such that no two of them are collinear and (overset(to)(a) xx overset(to)(b)) xx overset(to)( c) = (1)/(3) |overset(to)(b)||overset(to)(c )|overset(to)(a). If 0 is the angle between vectors overset(to)(b) " and " overset(to)(c ) then a value of sin 0 is

If overset(to)(a) , overset(to)(b) " and " overset(to)( c) are unit coplanar vectors then the scalar triple product [2 overset(to)(a) - overset(to)(b), 2 overset(to)(b) - overset(to)(c ) ,2 overset(to)(c ) - overset(to)(a)] is

A,B,C and d are four points in a plane with position vectors overset(to)(a),overset(to)(b),overset(to)(c ) and overset(to)(d) respectively such that (overset(to)(a)-overset(to)(d)).(overset(to)(b)-overset(to)(c))=(overset(to)(b)-overset(to)(d))(overset(to)(c)-overset(to)(a))=0 The point D then is the .... of the DeltaABC

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

If overset(to)(a) " and " overset(to)(b)_(1) are two unit vectors such that overset(to)(a) +2overset(to)(b) and 5overset(to)(a) -4overset(to)(b) are perpendicular to each other then the angle between overset(to)(a) " and " overset(to)(b) is

Let overset(to)(a) =a_(1) hat(i) + a_(2) hat(j) + a_(3) hat(k) , overset(to)(b) = b_(1) hat(i) +b_(2) hat(j) +b_(3) hat(k) " and " overset(to)(c) = c_(1) hat(i) +c_(2) hat(j) + c_(3) hat(k) be three non- zero vectors such that overset(to)(c ) is a unit vectors perpendicular to both the vectors overset(to)(c ) and overset(to)(b) . If the angle between overset(to)(a) " and " overset(to)(n) is (pi)/(6) then |{:(a_(1),,a_(2),,a_(3)),(b_(1),,b_(2),,b_(3)),(c_(1),,c_(2),,c_(3)):}|^2 is equal to

If D, E and F be the middle points of the sides BC,CA and AB of the DeltaABC , then AD+BE+CF is

Let vec(A),vec(B),vec(C ) be vectors of length 3, 4, 5, respectively Let overset(to)(A) be perpendicular to overset(to)(B) +overset(to)(C ) , overset(to)(B) " to " overset(to)( C) + overset(to)(A) " and " overset(to)(C ) to overset(to)(A) +overset(to)(B) then the length of vector overset(to)(A) +overset(to)(B)+overset(to)(C ) is .......