Home
Class 12
MATHS
Let Delta PQR be a triangle Let veca=...

Let `Delta PQR` be a triangle Let `veca=bar(QR),vecb=bar(RP)and vecc=bar(PQ)if |veca|=12,|vecb|=4 sqrt(3)and vecb.vecc=24,`then which of the following is (are ) true ?

A

`(|c|^(2))/(2)-|a|=12`

B

`(|c|^(2))/(2)+|a|=30`

C

`|axxb+cxxa|=48sqrt(3)`

D

`a.b =-72`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

Given `|a| =12 , |b| =4sqrt(3)`
`a+b+c=0`
`rArr a=- (b+c)`
We have `|a|^(2) =|b+c|^(2)`
`rArr |a|^(2) =|b|^(2) +|c|^(2)+2b.c`
`rAr 144 = 48 +|c|^(2) +48`

rArr |c| =4 sqrt(3) `
`Also , ` |c|^(2) =|a|^(2)+ |b|^(2) +2a.b`
` rArr 48 =144 + 48 + 2a. b`
`rArr a. b =- 72`
`:. ` Option (d) is correct.
Also , `axx b= c xx a`
`rArr a xx b + c xx a = 2a xx b `
`rArr | axx b+ c xx a| = 2 | a xx b| = 2 sqrt(|a|^(2) |b|^(2) -(a.b)^(2))`
`= 2 sqrt((144) (48) -(-72)^(2))`
`=2 (12) sqrt(48-36) =48 sqrt(3)`
`:. ` Oprion (c ) is correct .
Also `(|c|^(2))/(2) - |a| =24 -12 =12 `
`:.` Option (a) is correct.
and `(|c|^(2))/(2) + |a| =24 +12 =36`
`:. ` Option (b) is not correct .
Promotional Banner

Similar Questions

Explore conceptually related problems

If |veca|+|vecb|=|vecc|and veca+vecb=vecc then find the angle between veca and vecb .

If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

If (veca xx vecb)xx vecc= veca xx (vecb xx vecc) and vecb perpendicular to vecc then which is true ?

If veca, vecb and vecc are such that [veca vecb vecc] =1, vecc= lambda veca xx vecb , angle between veca and vecb is 2pi//3,|veca|=sqrt2 |vecb|=sqrt3 and |vecc|=1/sqrt3 then the angle between veca and vecb is

If veca,vecb and vecc are three unit vectors satisfying veca-sqrt(3)vecb+vecc=vec0 then find the angle between veca and vecc ?

veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. Vecb =2 . If vecc = (2vecaxx vecb) - 3vecb then find angle between vecb and vecc .

Three vectors veca,vecb and vecc are such that |veca|=2,|vecb|=3,|vecc|=4, and veca+vecb+vecc=vec0. Find 4veca.vecb+3vecb.vecc+3vecc.veca .

Three vectors veca,vecb and vecc are such that |veca|=2,|vecb|=3,|vecc|=4 and veca+vecb+vecc=0 find 4veca*vecb+3vecb*vecc+3vecc*veca .

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .