Home
Class 12
MATHS
Let O be the origin and vec(OX) , vec(O...

Let O be the origin and` vec(OX) , vec(OY) , vec(OZ)` be three unit vector in the directions of the sides `vec(QR) , vec(RP),vec(PQ)` respectively , of a triangle PQR.
if the triangle PQR varies , then the manimum value of `cos (P+Q) + cos(Q+R)+ cos (R+P)` is

A

`-(3)/(2)`

B

`(3)/(2)`

C

`(5)/(3)`

D

`-(5)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A

cos (P+Q) + cos(Q +R) + cos (R+P)
=- (cos R + cos P + cos Q)
Max . Of cos `P + cos Q + cos (Q +R) =(3)/(2)`
Min. of cos (P+Q) cos (Q+R) + cos (R+P) is `=-(3)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vector in the directions of the sides vec(QR) , vec(RP),vec(PQ) respectively , of a triangle PQR. |vec(OX)xxvec(OY)|=

Let O be the origin, and O X x O Y , O Z be three unit vectors in the direction of the sides Q R , R P , P Q , respectively of a triangle PQR. If the triangle PQR varies, then the minimum value of cos(P+Q)+cos(Q+R)+cos(R+P) is: -3/2 (b) 5/3 (c) 3/2 (d) -5/3

Let O be the origin, and O X , O Y , O Z be three unit vectors in the direction of the sides Q R , R P , P Q , respectively of a triangle PQR. | O X xx O Y |= (a) sin(P+R) (b) sin2R (c)sin(Q+R) (d) sin(P+Q)dot

Find the unit vector in the direction of vector vec(PQ) , where P and Q are the points (1, 2, 3) and (4, 5, 6) respectively.

If vec(PO) + vec(OQ) = vec(QO) + vec(OR) prove that the points P,Q,R are collinear .

If the projections of vec(PQ) on OX , OY OZ are respectively 12, 3 and 4 then the magnitude of vec PQ is

In a triangle PQR with right angle at Q , the value of angle P is x, PQ = 7cm and QR 24 cm , then find sin x and cos x

Let D ,Ea n dF be the middle points of the sides B C ,C Aa n dA B , respectively of a triangle A B Cdot Then prove that vec A D+ vec B E+ vec C F= vec0 .

Let vec a , vec b , vec c be three unit vectors and vec a . vec b= vec a . vec c=0. If the angel between vec b and vec c is pi/3 , then find the value of |[ vec a vec b vec c]| .

If vec p , vec q , vec r denote vector vec bxx vec c , vec cxx vec a , vec axx vec b , respectively, show that vec a is parallel to vec qxx vec r , vec b is parallel vec rxx vec p , vec c is parallel to vec pxx vec qdot