Home
Class 12
MATHS
Let a= hat(i) + 2hat(j) + 4hat(k) " ...

Let `a= hat(i) + 2hat(j) + 4hat(k) " " b= hat(i) + lambda hat(j) +4hat(k)` and `c= 2hat(i) +4hat(j)+(lambda^(2)-1) hat(k)` be coplanar vectors . Then the non-zero vectors `axx c` is

A

`-10 hat(i) +5hat(j)`

B

`-10hat(i)-5hat(j)`

C

`-14hat(i)-5hat(j)`

D

`-14hat(i)+5hat(j)`

Text Solution

Verified by Experts

The correct Answer is:
A

We know that if a,b,c are coplanar vectors then `[a,b,c]=0`
`:. |{:(1,,2,,4),(1,,lambda,,4),(2,,4,,lambda^(2)-1):}|=0`
`rArr 1{lambda(lambda^(2)-1) -16} -2(lambda^(2) -1) -8) +4(4-2lambda) =0`
`rArr lambda^(2) -lambda -16 -2lambda^(2) + 18 +16 -8lambda =0`
`rArr lambda^(2) -2lambda^(2) -9lambda +18 =0`
`rArr lambda^(2) (lambda-2) -9 (lambda - 2) = 0 `
`rArr (lambda -2 ) (lambda^(2) -9) =0`
`rArr (lambda - 2) (lambda+3) (lambda-3 =0`
`:. lambda=2 , 3 " or " -3` lt brgt If `lambda =2 ` then
`a xx c = |{:(hat(i) ,,hat(j),,hat(k) ),(1,,2,,4),(2,,4,,3):}|=hat(i)(6-16)-hat(j) (3-8) + hat(k) (4-4)`
`=- 10hat(i) + 5hat(j)`
If `lambda = +- 3 " then " a xx c|{:(hat(i) ,,hat(j) ,,hat(k)),(1,,2,,4),(2,,4,,3):}|=0`
(because last two rows are proportional)
Promotional Banner

Similar Questions

Explore conceptually related problems

A vector perpendicular to both hat(i) + hat(j) + hat(k) and 2hat(i) + hat(j) + 3hat(k) is,

Show that the vectors vec a = hat i - 2 hat j + 3 hat k, vec b = -2 hat i + 3 hat j - 4 hat k and vec c = hat i - 3 hat j + 5 hat k are coplanar.

Show that the vectors vec a = hat i - 2 hat j + 3 hat k , vec b = -2 hat i +3hat j - 4 hat k and vec c = hat i - 3 hat j + 5 hat k are coplanar.

If 3 hat i + 6 hat j + 2 hat k , hat i - 2 hat j + 3 hat k and 5 hat i + 2 hat j + m hat k are coplanar.

Let a= hat(i) - hat(j) , b=hat(i) + hat(j) + hat(k) and c be a vector such that axx c + b=0 " and " a. c =4, then |c|^(2) is equal to

Find the sum of the vectors vec a = hat i -2 hat j + hat k , vec b = 2 hat i +4 hat j +5 hat k and vec c = 2 hat i -6 hat j -7 hat k

show that the vectors 3 hat(i)- 2hat(j)+ hat(k), hat(i)-3hat(j)+5hat(k) and 2hat(i)+ hat(j)- 4 hat(k) form a right angled triangle

Show that the vectors 2 hat i - 3 hat j + hat k , - 4hati - hat j + 3 hat k and -2 hat i - 4hatj + 4 hat k are coplanar.

Show that the vectors vec a = hat i-2 hat j+3 hat k and vec b=-2 hat i+3 hat j -4 hat k and vec c = hat i -3 hat j +5 hat k are coplanar

If vec a = hat i + hat j + hat k , vec b = 2 hat i - hat j + 3 hat k and vec c = hat i - 2 hat j + hat k , find a unit vector parallel to the vector 2 veca - vec b + 3 vec c