Home
Class 12
MATHS
The edges of a parallelopied are of un...

The edges of a parallelopied are of unit length and are parallel to non- coplanar unit vector `hat(a), hat(b) , hat(c )` such that `hat(a) , hat(b) = hat(b), hat( c)=hat(c ), hat(a) = .(1)/(2). ` Then the volume of the parallelopiped is

A

`(1)/(sqrt(2))` cu unit

B

`(1)/(2sqrt(2))` cu unit

C

`(sqrt(3))/(2) ` cu unit

D

` (1)/(sqrt(3))` cu unit

Text Solution

Verified by Experts

The correct Answer is:
A

The volume of the parallelopied with coterminus edges as `hat(a) , hat(b), hat(c )` is given by `[hat(a), hat(b), hat(c ) ] = hat(a) . (hat(b) xx hat(c ))`

Now `[hat(a) , hat(b) , hat(c )]^(2) = |{:(hat(a)"."hat(a),,hat(a)"." hat(b),,hat(a)"."hat(c )),(hat(b)"."hat(a),,hat(b)"."hat(b),,hat(b)"."hat(c )),(hat(c ) "." hat(a) ,,hat(c )"."hat(b),,hat(c )"." hat(c )):}|= |{:(1,,1//2,,1//2),(1//2,,1,,1//2),(1//2,,1//2,,1):}|`
`rArr [hat(a), hat(b) ,hat(c )]^(2)=1 (1-(1)/(4)) -(1)/(2) ((1)/(2) -(1)/(4)) + (1)/(2) ((1)/(4)-(1)/(2)) = (1)/(2)`
Thus the required volume of the parallelopiped
`=(1)/(sqrt(2)) ` cu unit
Promotional Banner

Similar Questions

Explore conceptually related problems

Find a vector whose length is 7 and that is perpendicular to each of the vectors vec(A) = 2 hat(i) - 3 hat(j) + 6 hat(k) and vec(B) = hat(i) + hat(j) - hat(k)

If the vectors 2 hat i-3 hat j , hat i+ hat j- hat ka n d3 hat i- hat k form three concurrent edges of a parallelepiped, then find the volume of the parallelepiped.

Find a vector of magnitude 5 units, and parallel to the resultant of the vectors vec a = 2 hat i + 3 hat j - hat k and vec b = hat i - 2 hat j+ hat k

The number of vectors of unit length perpedicular to the vectors (hat(i)+hat(j))and(hat(j)+hat(k)) is

Check whether the given three vectors are coplanar or non-coplanar. -2 hat i-2 hat j+4 hat k ,-2 hat i+4 hat j ,4 hat i-2 hat j-2 hat k

The volume (in cubic units) of the parallelopiped whose edges are represented by the vectors hat i + hat j , hat j + hat k and hat k + hat i is

Let alpha in R and the three vectors a=alpha hat(i) + hat(j) +3hat(k) , b=2hat(i) +hat(j) -alpha hat(k) " and " c= alpha hat(i) -2hat(j) +3hat(k) . Then the set S={alpha: a,b " and c are coplanar"}

If the four points with position vectors −2 hat i+ hat j+ hat k, hat i+ hat j + hat k, hat j – hat k and λ hat j+ hat k are coplanar, then λ=

Let hat(a) , hat(b) " and " hat( c) be three unit vectors such that hat(a) xx (hat(b) xx hat( c)) = (sqrt(3))/(2)( hat(b) +hat(c )). If hat(b) is not parallel to hat( c) then the angle between hat(a) " and " hat(b) is

If hat a , hat b ,a n d hat c are unit vectors, then | hat a- hat b|^2+| hat b- hat c|^2+| hat c- hat a|^2 does not exceed