Home
Class 12
MATHS
Find the value of a so that the volume o...

Find the value of `a` so that the volume of the parallelepiped formed by vectors ` hat i+a hat j+k , hat j+a hat ka n da hat i+ hat k` becomes minimum.

A

-3

B

3

C

`1//sqrt(3)`

D

`sqrt(3)`

Text Solution

Verified by Experts

The correct Answer is:
C

We know that volume of parallelopiped whose edges
are `vec(a) , vec(b) , vec(c ) = [vec(a) ,vec(b) ,vec( c)].`
`:. |{:(1,,alpha,,1),(0,,1,,alpha),(alpha,,0,,1):}|=1 + alpha^(3) - alpha`
Let ` f(a) = a^(3) -a +1`
`rArr f' (a) = 3a^(2) -1`
`rArr f''(a) =6a`
For maximum or minimum pu f' (a) =0
`rArr a= +- (1)/(sqrt(5)) ` which shows f(a) is minimum at `a= (1)/(sqrt(3))` and maximum at `a=-(1)/(sqrt(3))`
Promotional Banner

Similar Questions

Explore conceptually related problems

The volume (in cubic units) of the parallelopiped whose edges are represented by the vectors hat i + hat j , hat j + hat k and hat k + hat i is

Find the angle between the vectors hat i - 2 hat j + 3 hat k and 3 hat i - 2 hat j + hat k .

Prove that the vectors 3 hat i + hat j + 3 hat k and hat i - hat k are perpendicular.

Find the area of the parallelogram determined by the vectors vec a = hat i + hat j + 3 hat k , vec b = 3 hat i - 4 hat j + 5 hat k .

Find the volume of a parallelopiped with coterminous edges represented by the vectors 3 hat i + 4 hat j , 2 hat i + 3 hat j + 4 hat k and 5 hat k .

Find the volume of the parallelepiped whose coterminus edges are given by the vectors hat i + 2 hat j + 3 hat k , 2 hat i - hat j - hat k and 3 hat i + 4 hat j + 2 hat k

Find the value of lambda if the volume of a tetrashedron whose vertices are with position vectors hat i-6 hat j+10 hat k ,- hat i-3 hat j+3 hat k ,5 hat i- hat j+lambda hat ka n d7 hat i-4 hat j+7 hat k is 11 cubic unit.

Find the angle between the vectors hat i-2 hat j+3 hat ka n d3 hat i-2 hat j+ hat kdot

Find the area of the triangle whose adjacent sides are made by the vectors vec a = 3 hat i + 4 hat j + 4 hat k and vec b = hat i - hat j + hat k .

Find angle theta between the vectors vec a = hat i + hat j - hat k and vec b = hat i - hat j + hat k .