Home
Class 12
MATHS
If vecV=2vec i+ vec(j) - vec(k) " and "...

If ` vecV=2vec i+ vec(j) - vec(k) " and " vec(W) = vec(i) + 3vec(k)` . if` vec (U)` is a unit vectors then the maximum value of the scalar triple product `[vec(U) , vec(V) , vec(W)]` is

A

`(-1)/(sqrt(59))`

B

`sqrt(10) + sqrt(6)`

C

`sqrt(59)`

D

`sqrt(60)`

Text Solution

Verified by Experts

The correct Answer is:
C

Given `vec( V) = 2hat(i) + hat(j) - hat(k) " and " vec(W) = hat(i) + 3hat(k)`
`[vec(U)vec(V) vec(W)] = vec(U) . [(2hat(i) + hat(j) -hat(k)) xx (hat(i) + 3hat(k))]`
`=vec(U) .(3hat(i) -7hat(j) - hat(k)) = |vec(U)||3hat(i) - 7 hat(j) - hat(k)|` cos 0
Which is maximum if angle between `vec(U) " and " 3hat(i) - 7hat(j) - hat(k) `
is 0 and maximum value
`+|3hat(i) -7hat(j) - hat(k)|= sqrt(59)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If lambda vec(i) + 2lambda vec(j) + 2 lambda vec(k) is a unit vector then the value of lambda is ……………

Find the torque of the resultant of the three forces represented by -3 vec(i) + 6 vec(j) - 3 vec(k) , 4 vec(i) - 10 vec(j) + 12 vec(k), and 4 vec(i) + 7 vec(j) acting at the point with position vector 8 vec(i) - 6 vec(j) - 4 vec(k) , about the point with position vector 18 vec(i) + 3 vec(j) - 9 vec(k) .

If vec a=2 vec i+3 vec j- vec k , vec b=- vec i+2 vec j-4 vec ka n d vec c= vec i+ vec j+ vec k , then find thevalue of ( vec axx vec b)dot( vec axx vec c)dot

If veca = hat i - hat j + hat k, vec b = 2 hat i + hat j + 3 hat k , then (i) Find vec a + vec b , vec a - vec b and vec a. vec b . (ii) Find (vec a + vec b) xx (vec a - vec b) . (iii) Find a unit vector perpendicular to both vec a + vec b and vec a - vec b .

If vec a is a unit vector and (vec x - vec a).(vec x + vec a) = 8 , then find |vec x| .

vec u , vec va n d vec w are three non-coplanar unit vecrtors anf alpha,betaa n dgamma are the angles between vec ua n d vec v , vec va n d vec w ,a n d vec wa n d vec u , respectively, and vec x , vec ya n d vec z are unit vectors along the bisectors of the angles alpha,betaa n dgamma , respectively. Prove that [ vec xxx vec y vec yxx vec z vec zxx vec x]=1/(16)[ vec u vec v vec w]^2sec^2alpha/2sec^2beta/2sec^2gamma/2dot

If vec a, vec b, vec c are unit vectors such that vec a+ vec b+ vec c =0 , find the value of vec a.vec b+ vec b .vec c + vec c. vec a .

If vec a and vec b are two vectors such that | vec axx vec b|=2, then find the value of [ vec a vec b vec axx vec b].

If vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c are coplanar vectors, then for some scalar k prove that vec a+ vec c=k vec bdot

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is a. 0 b. 1 c. -sqrt(3) d. sqrt(3)