Home
Class 12
MATHS
If overset(to)(a) =hat(i) - hat(k) , o...

If `overset(to)(a) =hat(i) - hat(k) , overset(to)(b) = x hat(i) + hat(j) + (1-x) hat(k)` and
`vec(c ) =y hat(i) +x hat(j) + (1+x-y) hat(k) . "Then " [overset(to)(a) , overset(to)(b) , overset(to)( c) ]` depends on

A

only x

B

only y

C

neither x nor y

D

both x and y

Text Solution

Verified by Experts

The correct Answer is:
C

`[vec(a) , vec(b) , vec(c ) ] = |{:(1,,0,,-1),(x,,1,,1-x),(y,,x,,1+x-y):}|`
Applying `C_(3) to C_(1)+ C_(3),`
`|{:(1,,0,,0),(x,,1,,1),(y,,x,,1+x):}|=1`
Therefore it neither depends on x nor y.
Promotional Banner

Similar Questions

Explore conceptually related problems

Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) - vec(b)

Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) +vec(b)

If overset(to)(a) = (hat(i) + hat(j) + hat(k)) , overset(to)(a) .overset(to)(b) =1 " and " overset(to)(a) xx overset(to)(b) = hat(j) - hat(k), " then " overset(to)(b) is equal to

Let overset(to)(a) =a_(1) hat(i) + a_(2) hat(j) + a_(3) hat(k) , overset(to)(b) = b_(1) hat(i) +b_(2) hat(j) +b_(3) hat(k) " and " overset(to)(c) = c_(1) hat(i) +c_(2) hat(j) + c_(3) hat(k) be three non- zero vectors such that overset(to)(c ) is a unit vectors perpendicular to both the vectors overset(to)(c ) and overset(to)(b) . If the angle between overset(to)(a) " and " overset(to)(n) is (pi)/(6) then |{:(a_(1),,a_(2),,a_(3)),(b_(1),,b_(2),,b_(3)),(c_(1),,c_(2),,c_(3)):}|^2 is equal to

Let overset(to)(a) = hat(i) - hat(j) , vecb=-hat(j) - hat(k) , overset(to)( c) =- hat(i) - hat(k) . If overset(to)(d) is a unit vector such that overset(to)(a).vec(d) =0= [ vec(b) vec(c ) vecd] then overset(to)(d) equals

Find the sum of the vectors veca = hat i - 2 hat j + hat k, vec b = - 2 hat i + 4 hat j + 5 hat k and vec c = hat i - 6 hat j - 7 hat k .

Find vec a. vec b , when vec a = hat i + hat j + 2 hat k and vec b = 3 hat i + 2 hat j - hat k .

Find veca. vec b when veca = 2 hat i + 2 hat j - hat k and vec b = 6 hat i - 3 hat j + 2 hat k .