Home
Class 12
MATHS
For three vectors vec u , vec va n d ve...

For three vectors ` vec u , vec va n d vec w` which of the following expressions is not equal to any of the remaining three ? a.` vec u .( vec vxx vec w)` b. `( vec vxx vec w). vec u` c. ` vec v.( vec uxx vec w)` d. `( vec uxx vec v).vec w`

A

`overset(to)(u). (overset(to) xx overset(to)(W))`

B

`(overset(to)(v) xx overset(to)(W)), overset(to)(u)`

C

` overset(to)(v), (overset(to)(u) xx overset(to)(W))`

D

`(overset(to)(u) xx overset(to)(W)) , overset(to)(W)`

Text Solution

Verified by Experts

The correct Answer is:
C

`[vec(u) vec(v) vec(w)]=|vec(v)vec(w)vec(u)|=[vec(w)vec(u)vec(v)]=-[vec(v)vec(u)vec(w)]`
Therefore (c ) is the answer.
Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following expressions are meaningful? a. vec u ( vec vxx vec w) b. ( vec u .vec v).vec w c. ( vec u . vec v)vec w d. vec uxx( vec v . vec w)

For any four vectors, prove that ( vec bxx vec c)dot( vec axx vec d)+( vec cxx vec a)dot( vec bxx vec d)+( vec axx vec b)dot( vec cxx vec d)=0.

For any three vectors vec a, vec b , vec c , show that vec a xx (vec b + vec c) + vec b xx (vec c + vec a) + vec c xx (vec a + vec b) = 0

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

If vec x+ vec cxx vec y= vec a and vec y+ vec cxx vec x= vec b ,where vec c is a nonzero vector, then which of the following is not correct? a. vec x=( vec bxx vec c+ vec a+( vec c . vec a) vec c)/(1+ vec c . vec c) b. vec x=( vec cxx vec b+ vec b+( vec c . vec a) vec c)/(1+ vec c . vec c) c. vec y=( vec axx vec c+ vec b+( vec c . vec b) vec c)/(1+ vec c . vec c) d. none of these

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

If vec u , vec va n d vec w are three non-cop0lanar vectors, then prove that ( vec u+ vec v- vec w)dot( vec u- vec v)xx( vec v- vec w)= vec udot vec vdotxx vec w

If vec a and vec b are orthogonal unit vectors, then for a vector vec r noncoplanar with vec a and vec b , vector rxxa is equal to a. [ vec r vec a vec b] vec b-( vec r. vec b)( vec bxx vec a) b. [ vec r vec a vec b]( vec a+ vec b) c. [ vec r vec a vec b] vec a-( vec r. vec a) vec axx vec b d. none of these

Show that for any three vectors veca , vec b and vec c [ vec a + vec b, vecb + vec c , vec c + vec a ] =2[vec a , vec b , vecc] .

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n (a) vec a . vec b+ vec b . vec c+ vec c . vec a=0 (b) vec axx vec b= vec bxx vec c= vec cxx vec a (c) vec adot vec b= vec bdot vec c= vec c dot vec a (d) vec axx vec b+ vec bxx vec c+ vec cxx vec a=0