Home
Class 12
MATHS
If veca=hati+hatj+hatk, vecb=4hati+3hatj...

If `veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk` and `vecc=hati+alphahatj+betahatk`
are linearly dependent vectors and `|vecc|=sqrt(3)` then

A

`alpha=1, beta =-1`

B

`alpha= 1,beta =+-1`

C

`alpha=- 1,beta = +-1`

D

` alpha= +- 1,beta =1`

Text Solution

Verified by Experts

The correct Answer is:
D

Since `vec(a) , vec(b) ,vec(c ) ` are linearly dependent vectors .
`rArr [vec(a) ,vec(b) vec(c )]=0`
` rArr |{:(1,,1,,1),(4,,3,,4),(1,,alpha,,beta ):}|=0`
applying `C_(2) to C_(2)- C_(1), C_(3) to C_(3) - C_(1)`
`|{:(1,,0,,0),(4,,-1,,0),(1,,alpha-1,,beta-1):}|=0 rArr - (beta - 1) =0 rArr beta =1`
Also `|vec(c )| = sqrt(3)`
`rArr 1+alpha + beta^(2) =3" ""[given " c = hat(i) + alpha hat(j) + beta hat(k)"]"`
`rArr 1+ alpha^(2) +1 =3 rArr alpha^(2) =1rArr alpha = +-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of (lamda -4) .

If veca=hati-2hatj+3hatk, vecb=2hati+hatj-2hatk, vec c=3hati+2hatj+hatk , find (veca xx vecb)xxvec c

If veca=hati-2hatj+3hatk, vecb=2hati+hatj-2hatk, vec c=3hati+2hatj+hatk , find veca xx (vecb xx vec c)

If veca=hati-2hatj+3hatk, vecb=2hati+hatj-2hatk, vec c=3hati+2hatj+hatk , find veca*(vecb xx vec c) .

If veca=-3hati-hatj+5hatk , vecb=hati-2hatj+hatK , vecc=4hatj-5hatk , find veca.(vecbxxvecc) .

Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the pland of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

If veca=hati+hatj+hatk,vecb=2hati-hatj+3hatkandvecc=hati-2hatj+hatk , find a unit vector parallel to the vector 2veca-vecb+3vecc .