Home
Class 12
MATHS
Let overset(to)(a) = hat(i) - hat(j) ,...

Let `overset(to)(a) = hat(i) - hat(j) , vecb=-hat(j) - hat(k) , overset(to)( c) =- hat(i) - hat(k) .` If `overset(to)(d)` is a unit vector such that `overset(to)(a).vec(d) =0= [ vec(b) vec(c ) vecd]` then `overset(to)(d)` equals

A

`+- . (hat(i)+hat(j)-2hat(k))/(sqrt(6))`

B

`+- . (hat(i) + hat(j) - hat(k))/(sqrt(3))`

C

` +- . (hat(i) + hat(j) + hat(k))/(sqrt(3))`

D

` +- hat(k)`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `vec(d) = xhat(i) +yhat(j) +zhat(k)`
where `x^(2) + y^(2) + z^(2) =1`
Since `vec(a) ". " vec(d) =0`
` rArr x-y =0rArr x=y`
Also `[vec(b) vec(c ) vec(d)] =0`
`rArr |{:(0,,1,,-1),(-1,,0,,1),(x,,y,,z):}|=0 rArr x+y+ z=0`
`rArr 2x+ z=0 `
From Eqs (i) , (ii) and (iii)
`x^(2) +x^(2) +4x^(2) = 1 rArr x = +- (1)/(sqrt(6))`
`:. vec(d) = +- (1)/(sqrt(6)) (hat(i) +hat(j) - 2hat(k))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If overset(to)(a) = (hat(i) + hat(j) + hat(k)) , overset(to)(a) .overset(to)(b) =1 " and " overset(to)(a) xx overset(to)(b) = hat(j) - hat(k), " then " overset(to)(b) is equal to

If overset(to)(a) =hat(i) - hat(k) , overset(to)(b) = x hat(i) + hat(j) + (1-x) hat(k) and vec(c ) =y hat(i) +x hat(j) + (1+x-y) hat(k) . "Then " [overset(to)(a) , overset(to)(b) , overset(to)( c) ] depends on

Let overset(to)(a) =a_(1) hat(i) + a_(2) hat(j) + a_(3) hat(k) , overset(to)(b) = b_(1) hat(i) +b_(2) hat(j) +b_(3) hat(k) " and " overset(to)(c) = c_(1) hat(i) +c_(2) hat(j) + c_(3) hat(k) be three non- zero vectors such that overset(to)(c ) is a unit vectors perpendicular to both the vectors overset(to)(c ) and overset(to)(b) . If the angle between overset(to)(a) " and " overset(to)(n) is (pi)/(6) then |{:(a_(1),,a_(2),,a_(3)),(b_(1),,b_(2),,b_(3)),(c_(1),,c_(2),,c_(3)):}|^2 is equal to

Let vec a= hat i- hat j , vec b= hat j- hat ka n d vec c= hat k- hat i. If vec d is a unit vector such that vec a.vec d=0=[ vec b vec c vec d], then d equals a. +-( hat i+ hat j-2 hat k)/(sqrt(6)) b. +-( hat i+ hat j- hat k)/(sqrt(3)) c. +-( hat i+ hat j+ hat k)/(sqrt(3)) d. +- hat k

Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) - vec(b)

Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) +vec(b)

If vec(a)=hat(i)-hat(j),vec(b)=hat(j)-hat(k),vec(c)=hat(k)-hat(i)" then find "[vec(a)-vec(b),vec(b)-vec(c),vec(c)-vec(a)]