Home
Class 12
MATHS
Let a,b,c be distinct non- negative ...

Let a,b,c be distinct non- negative numbers . If the vectors `ahat(i) + ahat(j) + chat(k) , hat(i) + hat(k) " and " chat(i) + c hat(j) + bhat(k)` lie in a plane then c is

A

the arithmetic mean of a and b

B

the geometic mean of a and b

C

the harmonic mean of a and b

D

equal to zero

Text Solution

Verified by Experts

The correct Answer is:
B

Since three vectors are coplanar .
`|{:(a,,a,,c),(1,,0,,1),(c,,c,,b):}|=0`
Applying `C_(1) to C_(1)-C_(2) , |{:(0,,a,,c),(1,,0,,1),(0,,c,,b):}|=0`
` rArr - 1 (ab -c^(2)) =0 rArr ab = c^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a ,b ,c be distinct non-negative numbers and the vectors a hat i+a hat j+c hat k , hat i+ hat k ,c hat i+c hat j+b hat k lie in a plane, and then prove that the quadratic equation a x^2+2c x+b=0 has equal roots.

If the vectors ahat(i)+ahat(j)+chat(k),hat(i)+hat(j) andchat(i)+chat(j)+bhat(k) are coplanar, prove that c is the geometric mean of a and b .

Show that the vectors are coplanar 2hat(i)+3hat(j)+hat(k),hat(i)-hat(j),7hat(i)+3hat(j)+2 hat(k)

A vector perpendicular to both hat(i) + hat(j) + hat(k) and 2hat(i) + hat(j) + 3hat(k) is,

Find lambda if the vectors hat i - hat j + hat k , 3 hat i + hat j + 2 hat k and hat i + lambda hat j - 3 hat k are coplanar.

If 3 hat i + 6 hat j + 2 hat k , hat i - 2 hat j + 3 hat k and 5 hat i + 2 hat j + m hat k are coplanar.

Show that the vectors are coplanar hat(i)-2hat(j)+3hat(k),-2hat(i)+3hat(j)-4hat(k),-hat(j)+2hat(k)

If the vector ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k)andhat(i)+hat(j)+chat(k)(anebnecne1) are coplanar, then (1)/(1-a)+(1)/(1-b)+(1)/(1-c)=

Let alpha in R and the three vectors a=alpha hat(i) + hat(j) +3hat(k) , b=2hat(i) +hat(j) -alpha hat(k) " and " c= alpha hat(i) -2hat(j) +3hat(k) . Then the set S={alpha: a,b " and c are coplanar"}

Find the sum of the vectors vec a = hat i - 2 hat j + hat k , vec b = -2 hat i + 4 hat j + 5 hat k and vec c = hat i - 6 hat j - 7 hat k