Home
Class 12
MATHS
For non- zero vectors overset(to)(a) ,...

For non- zero vectors `overset(to)(a) , overset(to)(b), overset(to)(c ),|(vec(a)xx vec(b)). vec(c )|`
`=|vec(a)||vec(b)||vec(c )|` holds if and only if

A

` overset(to)(a) , overset(to)(b)=0, overset(to)(b), overset(to)( c)=0`

B

`overset(to)(b), overset(to)(c) =0, overset(to)(c ), overset(to)(a) =0`

C

` overset(to)( c), overset(to)(a)= 0, overset(to)(a), overset(to)(b)=0`

D

` overset(to)(a).overset(to)(b)=overset(to)(b).overset(to)(c)=overset(to)(c).overset(to)(a)=0`

Text Solution

Verified by Experts

The correct Answer is:
D

Given `|(vec(a) xx vec(b)) "." vec(c ) |=|vec(a)||vec(b)||vec(c )|`
`rArr ||vec(a) ||vec(b)| sin 0 hat(n) "." vec(c ) |=| vec(a)||vec(b)||vec(c )|`
`rArr |vec(a)||vec(b)||vec( c)|| sin 0 ". " cos alpha |=| vec(a)||vec(b)||vec(c )|`
`:. vec(a) bot vec(b) " and " vec( c)|| hat(n)`
`i.e., vec(a) bot vec(b) " and " vec(c ) ` perpendicular to both` vec(a) " and " vec(b).`
Promotional Banner

Similar Questions

Explore conceptually related problems

For non-zero vectors vec a , vec b ,a n d vec c ,|( vec axx vec b)dot vec c|=| vec a|| vec b|| vec c| holds if and only if a. vec a* vec b=0, vec b* vec c=0 b. vec b* vec c=0, vec c* vec a=0 c. vec c* vec a=0, vec a* vec b=0 d. vec a* vec b=0, vec b* vec c=0, vec c* vec a=0

Prove that [vec(a)+vec(b)+vec(c),vec(b)+vec(c),vec(c)]=[vec(a)vec(b)vec(c)]

For any non-zero vectors vec(a),vec(b)andvec(c),(vec(a)xxvec(b)).vec(c) is

Prove that (vec(a). (vec(b) xx vec(c)) vec(a) = (vec(a) xx vec(b)) xx (vec(a) xx (c)) .

For any three vectors vec(a),vec(b)andvec(c),(vec(a)+vec(b)).(vec(b)+vec(c))xx(vec(c)+vec(a)) is

If vec(a),vec(b),vec(c) are coplanar vectors, show that (vec(a)xxvec(b))xx(vec(c)xxvec(d))=vec(0)

If vec(a),vec(b),vec(c) are non-coplanar, non-zero vectors such that [vec(a),vec(b),vec(c)]=3,"then"{"["vec(a)xxvec(b),vec(b)xxvec(c),vec(c)xxvec(a)"]"}^(2) is equal to

If vec(d)=vec(a)xx(vec(b)xxvec(c))+vec(b)xx(vec(c)xxvec(a))+vec(c)xx(vec(a)xxvec(b))," then "