Home
Class 12
MATHS
Let hat u= u1 hat i+u2 hat j+u3 hat k ...

Let `hat u= u_1 hat i+u_2 hat j+u_3 hat k` be a unit vector in be a unit vector in `RR^3 and hat w=1/sqrt6 (hat i+hat j+2 hat k)`.Given that there exists vector `hat v` in `RR^3` such that `|hat u xx vec v|=1 and hat w . (hat u xx vec v)=1`. Which of the following statement(s) is(are) correct?

A

There is exactly one choice for such V

B

There are infinitely many choice for such v

C

if `hat(u)` lines in the XY- plane then `|u_(1)|=|u_(2)|`

D

If `hat(u)` lies in the XY- plane then `2|u_(1)|=|u_(2)|`

Text Solution

Verified by Experts

The correct Answer is:
B, C

Let 0 be the angle between `hat(u) " and " vec(v)`
`:. |U xx vec(v) |=1 rArr |u| vec(v)|sin 0 =1`
`:. |vec(v)| sin 0 =1`

Clearly there may be infinite vectors `vec(OP) = vec(v)` such that P is always 1 unit distance from `hat(u)`
` :. ` Option (b) is correct .
Again let `phi` be the angle between w w and `uxx vec(v).`
`:. w.(vec(uxx vec(v)) =1 rArr |w| |uxx vec(v)|cos phi =1`
`rArr cos phi =1 rArr phi =0`
Thus ` w=u xx vec(v)`
Now if `hat(u)` lines in XY-plane then
`uxx vec(v) = |{:(hat(i) ,,hat(j),,j),(u_(1),,u_(2),,0),(v_(1),,v_(2),,v_(3)):}|" or " u= u hat(i) + u_(2) hat(j)`
`:. w= (u_(2) v_(3)) hat(i) -(u_(1)v_(3)) hat(j) + (u_(1) u_(2) - v_(1)u_(2))hat(k)`
`= (1)/(sqrt(6)) (hat(i)+hat(j) +2hat(k))`
`:. u_(2) v_(3) = (1)/(sqrt(6)) , u_(1) u_(3) = (-1)/(sqrt(6))`
` rArr (u_(2)u_(3))/(u_(1)u_(3)) =- 1 " or " |u_(1)|=|u_(2)|`
`:.` Option (c ) is correct
Now if `hat(u)` lies in XZ-plane then `u=u_(1) hat(i) + u_(3) hat(k)`
`:. uxx vec(v) = |{:(hat(i) ,,hat(j) ,,hat(k) ),(u_(1),,0,,u_(3)),(v_(1),,v_(2),,v_(3)):}|`
` rArr w = (- v_(2) u_(3)) hat(i) -(u_(1)v_(3) - u_(3)v_(1)) hat(j) + (u_(1) v_(2) ) hat(k)`
`rArr hat(k) = (1)/(sqrt(6)) (hat(i) + hat(j) + 2hat(k))`
` rArr - v_(2) u_(3) = (1)/(sqrt(6)) " and " u_(1) v_(2) = (2)/(sqrt(6))`
`:. |u_(2)|=2 |u_(3)|`
`:.` Option (d) is wrong
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the unit vector in the direction of the vector vec a = hat i - hat j + 2 hat k .

Find the unit vector in the direction of the vector vec a= hat i+ hat j+ 2 hat k .

If is given that vec(A) = 2 hat(i) + 3 hat(j) + hat(k) and vec(B) = 6 hat(i) + 9 hat(j) + 3hat(k) which of the following statements is correct ?

Find the unit vector in the direction of the vector vec a = -hat i + 2hat j + 2 hat k .

Find a unit vector in the direction of the vector vec a = 2 hat i + 2 hat j + hat k .

If vec a.hat i= vec a.( hat i+ hat j)= vec a.( hat i+ hat j+ hat k) , then find the unit vector vec a

Find the unit vector perpendicular to the plane vec rdot(2 hat i+ hat j+2 hat k)=5.

Find the unit vector along vec a - vec b where veca = hat i + 3 hat j - hat k and vec b = 3 hat i + 2 hat j + hat k .

Prove that the vectors vec a = 3 hat i + hat j +3 hat k and vec b = hat i - hat k are perpendicular.