Home
Class 12
MATHS
If overset(to)(X) "." overset(to)(A) =...

If `overset(to)(X) "." overset(to)(A) =0, overset(to)(X) "." overset(to)(B) =0, overset(to)(X) "." overset(to)(C ) =0` for some non-zero vector `overset(to)(X) " then " [overset(to)(A) overset(to)(B) overset(to)(C )]=0`

Text Solution

Verified by Experts

Since `vec(X)"."vec(A) =vec(X) "." vec(B) = vec(X) "." vec(C )=0`
`rArr vec(X) ` is perpendicular to `vec(A) ,vec(B),vec(C )` therfore `[vec(A),vec(B),vec(C )]=0`
Hence given statement is true .
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec(A),vec(B),vec(C ) be vectors of length 3, 4, 5, respectively Let overset(to)(A) be perpendicular to overset(to)(B) +overset(to)(C ) , overset(to)(B) " to " overset(to)( C) + overset(to)(A) " and " overset(to)(C ) to overset(to)(A) +overset(to)(B) then the length of vector overset(to)(A) +overset(to)(B)+overset(to)(C ) is .......

The scalar overset(to)(A) .[(overset(to)(B) + overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

Let overset(to)(A),overset(to)(B)" and " overset(to)(C ) be unit vectors . If overset(to)(A).overset(to)(B) = overset(to)(A).overset(to)(C ) =0 and that the angle between overset(to)(B) " and " overset(to)(C )" is " pi//6. Then overset(to)(A) =+-2 (overset(to)(B)xxoverset(to)(C ))

For any three vectors overset(to)(a), overset(to)(b) " and " overset(to)(C ) (overset(to)(a) - overset(to)(b)). {(overset(to)(b)-overset(to)(c))xx(overset(to)(c)-overset(to)(a))} = 2overset(to)(a).(overset(to)(b)xx overset(to)(c))

If overset(to)(a),overset(to)(b),overset(to)(c ),overset(to)(d) are four distinct vectors satisfying the conditions overset(to)(a)xxoverset(to)(b)=overset(to)(c )xx overset(to)(d) " and " overset(to)(a)xxoverset(to)(c ) = overset(to)(b)xx overset(to)(d) then prove that , overset(to)(a).overset(to)(b)+overset(to)(c ). overset(to)(d) ne overset(to)(a). overset(to)(c)+overset(to)(b).overset(to)(d) .

Let overset(to)(u),overset(to)(v) " and " overset(to)(w) be vectors such that overset(to)(u)+overset(to)(v)+overset(to)(w)=overset(to)(0). If |overset(to)(u)|=3.|overset(to)(v)|=4" and " |overset(to)(w)|=5 " then " overset(to)(u).overset(to)(v)+overset(to)(v).overset(to)(w)+overset(to)(w).overset(to)(u) is

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

if overset(to)(b) " and " overset(to)(c ) are any two non- collinear unit vectors and overset(to)(a) is any vector then (overset(to)(a).overset(to)(b))overset(to)(b).(overset(to)(a).overset(to)(c )) overset(to)(c ) + .(overset(to)(a).(overset(to)(b)xxoverset(to)(c)))/(|overset(to)(b)xxoverset(to)(c)|^(2)).(overset(to)(b)xxoverset(to)(c))=.........

If overset(to)(A), overset(to)(B), overset(to)(C ) three non-coplanar vectors then (overset(to)(A) ,(overset(to)(B)xxoverset(to)(C)))/((overset(to)(C)xx overset(to)(A)). overset(to)(B))+ (overset(to)(B).(overset(to)(A) xx overset(to)(C)))/(overset(to)(C).(overset(to)(A)xx overset(to)(B)))=.........