Home
Class 12
MATHS
Let a= hat(i) - hat(j) , b=hat(i) + hat(...

Let `a= hat(i) - hat(j) , b=hat(i) + hat(j) + hat(k)` and c be a vector such that `axx c + b=0 " and " a. c =4, ` then `|c|^(2)` is equal to

A

8

B

`(19)/(2)`

C

9

D

`(17)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

We have `(vec(a) xx vec(c )) + b=0`
`rArr a xx (vec(a) xx vec(c )) + axx b=0`
(taking cross product with a on both sides )
`rArr (vec(a) ". " vec(c )) a- (a .a ) c + |{:(hat(i),,hat(j),,hat(k)),(1,,-1,,0),(1,,1,,1):}|=0`
`[ :' a xx (b xx c ) = (a . c) b -(a. b) c]`
`rArr 4(hat(i) - hat(j)) - 2c + (-hat(i) -hat(j) + 2hat(k)) =0`
`[ :' a . a = (hat(i) - hat(j)) =1+1 =2 " and " a.c =4]`
`rArr 2c =4 hat(i) -4hat(j) -hat(i) -hat(j) +2hat(k)`
`rArr c = (3hat(i) -5hat(j) +2hat(k))/(2) rArr |c|^(2) = (9+25+4)/(4) =(19)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a= 2hat(i)+ hat(j) -2hat(k) , b=hat(i) +hat(j) and c be a vectors such that |c-a| =3, |(axxb)xx c|=3 and the angle between c and axx b" is "30^(@) . Then a. c is equal to

Let vec a= hat i- hat j , vec b= hat j- hat ka n d vec c= hat k- hat i. If vec d is a unit vector such that vec a.vec d=0=[ vec b vec c vec d], then d equals a. +-( hat i+ hat j-2 hat k)/(sqrt(6)) b. +-( hat i+ hat j- hat k)/(sqrt(3)) c. +-( hat i+ hat j+ hat k)/(sqrt(3)) d. +- hat k

Let a=hat(i)+hat(j)+sqrt(2)hat(k),b=b_(1)hat(i)+b_(2)hat(j)+sqrt(2)hat(k) and c=5hat(i)+hat(j)+sqrt(2)hat(k) be three vectors such that the projection vector of b on a is a. If a+b is perpendicular to c, then |b| is equal to

Let a=3hat(i) +2hat(j)+xhat(k) " and " b=hat(i)-hat(j) +hat(k) for some real x Then |axx b| =r is possible if

If vec a = 2 hat i + 2 hat j + 3 hat k , vec b = - hat i + 2 hat j + hat k and vec c = 3 hat i + hat j are such that vec a + lambda vec b is perpendicular to vec c , then find the value of lambda .

If vec a = 2 hat i - 3 hat j + 4 hat k , vec b = hat i + 2 hat j - hat k and vec c = 3 hat i - hat j + 2 hat k , then (i) find [vec a vec b vec c] (ii) find [ vec a + vec b vec b + vec c vec c + veca] .

If vec a = hat i + hat j + hat k , vec b = 2 hat i - hat j + 3 hat k and vec c = hat i - 2 hat j + hat k , find a unit vector parallel to the vector 2 veca - vec b + 3 vec c

Let vec a = hat i + hat j + hat k, vec b = hat i - hat j + 2 hat k and vec c = x hat i +(x -2) hat j - hatk .If the vector vec c lies in the plane of veca and vecb , thenx equals

If vec a= 3 hat i +2 hat j -hatk, vec b= hat i - 2 hat j + 3 hat k , vec c = 4 hat i +3 hat j -hat k Find vec a * (vec b xx vec c).

Let overset(to)(a) = hat(i) - hat(j) , vecb=-hat(j) - hat(k) , overset(to)( c) =- hat(i) - hat(k) . If overset(to)(d) is a unit vector such that overset(to)(a).vec(d) =0= [ vec(b) vec(c ) vecd] then overset(to)(d) equals