Home
Class 12
MATHS
Let overset(to)(a) =2hat(i) + hat(j) -2h...

Let `overset(to)(a) =2hat(i) + hat(j) -2hat(k) " and " overset(to)(b) = hat(i) + hat(j) . " If " overset(to)(c ) ` is a vectors such that `|overset(to)(a)"." overset(to)(c ) = |overset(to)( c)| , |overset(to)(c )- overset(to)(a)|= 2sqrt(2)` and the angle between `(overset(to)(a) xx overset(to)(b)) " and " overset(to)( c ) " is " 30^(@), " then "|(overset(to)(a) xx overset(to)(b)) xx overset(to)( c )|` is equal to

A

`(2)/(3)`

B

`(3)/(2)`

C

`2`

D

`3`

Text Solution

Verified by Experts

The correct Answer is:
B

Note in this question vectors `vec(c ) ` is not given therfore we cannot apply the formulae`vec(a) xx vec(b) xx vec(c )` (vector triple product )
Now `|(vec(a) xx vec(b)) xx vec(c ) | = | vec(a) xx vec(b)||vec(c )| sin 30^(@)`
Again `|vec(a) xxvec(b) | = |{:(hat(i) ,,hat(j) ,,hat(k)),(2,,1,,-2),(1,,1,,1):}|=2hat(i) -2hat(j) + hat(k)`
`rArr |vec(a) xx vec(b) | = sqrt(2^(2) + (-2)^(2)+1) = sqrt(4+4+1) = sqrt(9) =3`
Since `|vec(c )- vec(a)| = 2 sqrt(2)`
` rArr |vec(c )- vec(a) |^(2)=8`
`rArr (vec(c )- vec(a)) ". " (vec(c ) - vec(a)) =8`
`rArr vec(c ) ". " vec(c ) - vec( c) vec(a) - vec(a) "." vec(c ) + vec(a) ". " vec(a) =8`
` rArr |vec(c)|^(2)+ |vec(a)|^(2)- 2 vec(a) ". " vec(c ) =8`
` rArr |vec(c )|^(2) -2|vec(c)|+ 1=0`
`rArr (|vec(c )|-1)^(2) =0 rArr |vec(c )|=1`
From Eq. (i) , `|(vec(a) xx vec(b)) xx vec(C )| = (3) (1) . ((1)/(2)) = (3)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let overset(to)(a) = hat(i) - hat(j) , vecb=-hat(j) - hat(k) , overset(to)( c) =- hat(i) - hat(k) . If overset(to)(d) is a unit vector such that overset(to)(a).vec(d) =0= [ vec(b) vec(c ) vecd] then overset(to)(d) equals

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

Let overset(to)(A),overset(to)(B)" and " overset(to)(C ) be unit vectors . If overset(to)(A).overset(to)(B) = overset(to)(A).overset(to)(C ) =0 and that the angle between overset(to)(B) " and " overset(to)(C )" is " pi//6. Then overset(to)(A) =+-2 (overset(to)(B)xxoverset(to)(C ))

If overset(to)(a) " and " overset(to)(b)_(1) are two unit vectors such that overset(to)(a) +2overset(to)(b) and 5overset(to)(a) -4overset(to)(b) are perpendicular to each other then the angle between overset(to)(a) " and " overset(to)(b) is

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

The scalar overset(to)(A) .[(overset(to)(B) + overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

If overset(to)(a) = (hat(i) + hat(j) + hat(k)) , overset(to)(a) .overset(to)(b) =1 " and " overset(to)(a) xx overset(to)(b) = hat(j) - hat(k), " then " overset(to)(b) is equal to

If overset(to)(a) =hat(i) - hat(k) , overset(to)(b) = x hat(i) + hat(j) + (1-x) hat(k) and vec(c ) =y hat(i) +x hat(j) + (1+x-y) hat(k) . "Then " [overset(to)(a) , overset(to)(b) , overset(to)( c) ] depends on

Let overset(to)(a) , overset(to)(b) " and " overset(to)( c) be three non-zero vectors such that no two of them are collinear and (overset(to)(a) xx overset(to)(b)) xx overset(to)( c) = (1)/(3) |overset(to)(b)||overset(to)(c )|overset(to)(a). If 0 is the angle between vectors overset(to)(b) " and " overset(to)(c ) then a value of sin 0 is

If overset(to)(a) , overset(to)(b) " and " overset(to)( c) are unit coplanar vectors then the scalar triple product [2 overset(to)(a) - overset(to)(b), 2 overset(to)(b) - overset(to)(c ) ,2 overset(to)(c ) - overset(to)(a)] is