Home
Class 12
MATHS
Let veca = 2hati+(lambda)1hatj+3hatk , v...

Let `veca = 2hati+(lambda)_1hatj+3hatk` , `vec(b)=4hati+(3-(labda)_2)hatj+6hatk` and `vec(c)=3hati+6hatj+((lambda)_3-1)hatk` be three vectors such that `vec(b)=2 vec(a)` and `vec(a)` is perpendicular to `vec(c)` then a possible value of `((lambda)_1,(lambda)_2,(lambda)_3)` is: (a) `(1,3,1)` (b) `((-1/2),4,0)` (c) `(1,5,1)` (d) `((1/2), 4, -2)`

A

`(1,3,1)`

B

`(1,5,1)`

C

`(-(1)/(2), 4,0)`

D

`((1)/(2) , 4, -2)`

Text Solution

Verified by Experts

The correct Answer is:
C

We have `a= 2hat(i) + lambda_(1) hat(j) + 3hat(k) , b=4hat(i) + (3-lambda_(2)) hat(j) + 6 hat(k)`
and ` c= 3hat(i) + 6hat(j) + (lambda_(3)-1)hat(k)`
such that `b=2a`
Now ` b=2a`
` rArr 4hat(i) +(3 - lambda_(2)) hat(j)+ 6hat(k) =2 (2hat(i) + lambda_(1) hat(j) +3hat(k))`
` rArr 4hat(i) +(3 - lambda_(2)) hat(j)+6hat(k) =4 hat(i) +2lambda_(1) hat(j) +6hat(k)`
`rArr (3-2lambda_(1)) -lambda_(2))hat(j)=0`
`rArr 2lambda_(1) +lambda_(2) =3`
Also as a is perpendicular to c , therefore a, c=0
`rArr(2hat(i) + lambda_(1) hat(j) +3hatk)) . (vec(3hat(i) +6hat(j) + (lambda_(3) -1)hat(k)) =0`
`rArr 6 + 6lambda_(1) +3(lambda_(3) -1) =0`
`rArr 6lambda_(1) +3lambda_(3) + 3 =0`
`rArr 2lambda_(1) +lambda_(3) =-1`
Now from Eq . (i) `lambda_(2) =3 -2lambda` and from Eq . (ii)
`lambda_(3) = 2lambda_(1) -1`
`:. (lambda_(1) , lambda_(2) , lambda_(3)) -= (lambda_(1) , 3- 2lambda_(1) -1)`
If `lambda_(1) =- (1)/(2) ,` then
`lambda_(2) = 4 " and " lambda_(3) =0`
Thus a possible value of `(lambda_(1),lambda_(2) , lambda_(3)) = (-(1)/(2) , 4,0)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a = 2 hat i + 2 hat j + 3 hat k , vec b = - hat i + 2 hat j + hat k and vec c = 3 hat i + hat j are such that vec a + lambda vec b is perpendicular to vec c , then find the value of lambda .

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(1).vecb is equal to

If lambda vec(i) + 2lambda vec(j) + 2 lambda vec(k) is a unit vector then the value of lambda is ……………

Vectors veca = hati+2hatj+3hatk, vec b = 2hati-hatj+hatk and vecc= 3hati+hatj+4hatk are so placed that the end point of one vector is the starting point of the next vector. Then the vectors are

Let veca=a_(1)hati+a_(2)hatj+a_(3)hatk,vecb=b_(1)hati + b_(2)hatj + b_(3)hatk and vecc=c_(1)hati +c_(2)hatj +c_(3)hatk be three non-zero vectors such that vecc is a unit vector perpendicular to both vectors, veca and vecb . If the angle between veca and vecb is pi//6 "then" |{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|^(2) is equal to

veca=hati-hatj+hatk, vecb=2hati+hatj-hatk, vec c=lambda hati-hatj+lambda hatk are coplanar then lambda is :

If veca=hati-2hatj+3hatk, vecb=2hati+hatj-2hatk, vec c=3hati+2hatj+hatk , find veca xx (vecb xx vec c)

If veca=hati-2hatj+3hatk, vecb=2hati+hatj-2hatk, vec c=3hati+2hatj+hatk , find veca*(vecb xx vec c) .

If veca=hati-2hatj+3hatk, vecb=2hati+hatj-2hatk, vec c=3hati+2hatj+hatk , find (veca xx vecb)xxvec c