Home
Class 12
MATHS
If overset(to)(A) = 2hat(i) + hat(k) , o...

If `overset(to)(A) = 2hat(i) + hat(k) , overset(to)(B) = hat(i) + hat(j) +hat(k) " and " overset(to) (C ) = 4hat(i) - 3hat(j) +7hat(k)`
Determine a vector `overset(to)(R ) " satisfying " overset(to)(R ) xx overset(to)( B) = overset(to)( C ) xx overset(to)( B) " and " overset(to)(R ) " ." overset(to)(A) = 0`

Text Solution

Verified by Experts

The correct Answer is:
`-(hat(i) - 8hat(j) + 2hat(k)`

Let `vec(R ) = xhat(i) + yhat(j) +zhat(k)`
`:., vec(R ) xx vec(B) = vec(C ) xx vec(B )`
`rArr |{:(hat(i),,hat(j),,hat(k)),(x,,y,,z),(1,,1,,1):}|= |{:(hat(i),,hat(j),,hat(k)),(4,,-3,,7),(1,,1,,1):}|`
`rArr (y-z) hat(i) -(x -z) hat(j) +(x-y) hat(k) =- 10hat(i) -3hat(j) +7hat(k) `
`rArr y-z =- 10, z =- 3 , x -y =7`
and ` vec(R ) ". " vec(A ) =0 rArr 2x + z=0`
On solving above equations x=- 1 ,y=-8 and z=2
`:. vec(R ) =- hat(i) -8hat(j) +2hat(k)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) - vec(b)

Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) +vec(b)

If overset(to)(a) =hat(i) - hat(k) , overset(to)(b) = x hat(i) + hat(j) + (1-x) hat(k) and vec(c ) =y hat(i) +x hat(j) + (1+x-y) hat(k) . "Then " [overset(to)(a) , overset(to)(b) , overset(to)( c) ] depends on

If overset(to)(a) = (hat(i) + hat(j) + hat(k)) , overset(to)(a) .overset(to)(b) =1 " and " overset(to)(a) xx overset(to)(b) = hat(j) - hat(k), " then " overset(to)(b) is equal to

Let overset(to)(a) =a_(1) hat(i) + a_(2) hat(j) + a_(3) hat(k) , overset(to)(b) = b_(1) hat(i) +b_(2) hat(j) +b_(3) hat(k) " and " overset(to)(c) = c_(1) hat(i) +c_(2) hat(j) + c_(3) hat(k) be three non- zero vectors such that overset(to)(c ) is a unit vectors perpendicular to both the vectors overset(to)(c ) and overset(to)(b) . If the angle between overset(to)(a) " and " overset(to)(n) is (pi)/(6) then |{:(a_(1),,a_(2),,a_(3)),(b_(1),,b_(2),,b_(3)),(c_(1),,c_(2),,c_(3)):}|^2 is equal to

Let overset(to)(a) = hat(i) - hat(j) , vecb=-hat(j) - hat(k) , overset(to)( c) =- hat(i) - hat(k) . If overset(to)(d) is a unit vector such that overset(to)(a).vec(d) =0= [ vec(b) vec(c ) vecd] then overset(to)(d) equals

A vector perpendicular to both hat(i) + hat(j) + hat(k) and 2hat(i) + hat(j) + 3hat(k) is,

Let a=3hat(i) +2hat(j)+xhat(k) " and " b=hat(i)-hat(j) +hat(k) for some real x Then |axx b| =r is possible if