Home
Class 12
MATHS
Two lines L1x=5, y/(3-alpha)=z/(-2)a n d...

Two lines `L_1x=5, y/(3-alpha)=z/(-2)a n dL_2: x=alphay/(-1)=z/(2-alpha)` are coplanar. Then `alpha` can take value (s) a. `1` b. `2` c. `3` d. `4`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
A, D

If two straight lines are coplanar,
i.e.`" "(x-x_(1))/(a_(1))=(y-y_(1))/(b_(1))=(z-z_(1))/(c_(1))`
and`" "(x-x_(2))/(a_(2))=(y-y_(2))/(b_(2))=(z-z_(2))/(c_(2))` are coplanar

Then, `(x_(2)-x_(1),y_(2)-y_(1),z_(2)-z_(1)),(a_(1),b_(1),c_(1))` and `(a_(2),b_(2),c_(2))` are coplanar.
i.e.`" "|{:(x_(2)-x_(1),y_(2)-y_(1),z_(2)-z_(1)),(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)):}|=0`
Here, `" "x=5,(y)/(3-alpha)=(z)/(-2)`
`implies" "(x-5)/(0)=(y-0)/(-(alpha-3))=(z-0)/(-2)" "...(i)`
and`" "x-alpha,(y)/(-1)=(z)/(2-alpha)`
`implies" "(x-alpha)/(0)=(y-0)/(-1)=(z-0)/(2-alpha)" "...(ii)`
`implies" "|{:(5-alpha," "0," "0),(" "0,3-alpha," "-2),(" "0,-1,2-alpha):}|=0`
`implies" "(5-alpha)[(3-alpha)(2-alpha)-2]=0`
`implies" "(5-alpha)[a^(2)-5alpha+4]=0`
`implies" "(5-alpha)(alpha-1)(alpha-4)=0`
`:." "alpha=1,4,5`
Promotional Banner

Similar Questions

Explore conceptually related problems

Two lines L_1: x=5, y/(3-alpha)=z/(-2) and L_2: x=alpha, y/(-1)=z/(2-alpha) are coplanar. Then alpha can take value (s) a. 1 b. 2 c. 3 d. 4

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, then find the value of k.

The equation of the plane which is equally inclined to the lines (x-1)/2=y/(-2)=(z+2)/(-1)a n d=(x+3)/8=(y-4)/1=z/(-4) and passing through the origin is/are a. 14 x-5y-7z=0 b. 2x+7y-z=0 c. 3x-4y-z=0 d. x+2y-5z=0

The lines (x-2)/1=(y-3)/2=(z-4)/(-k)a n d=(x-1)/k=(y-4)/2=(z-5)/1 are coplanar if a. k=1or-1 b. k=0or-3 c. k=3or-3 d. k=0or-1

Show that the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(3)and(x-1)/(-3)=(y-4)/(2)=(z-5)/(1) are coplanar. Also, find the plane containing these lines.

If the straight lines (x-1)/(1)=(y-2)/(2)=(z-3)/(m^(2))and(x-3)/(1)=(y-2)/(m^(2))=(z-1)/(2) are coplanar, find the distinct real values of m.

If the line (x-2)/(3)=(y-1)/(-5)=(z+2)/(2)" lies in the plane "x+3y-az+beta=0" then "(alpha,beta) is

The straight lines (x-3)/(2)=(y+5)/(4)=(z-1)/(-13)and(x+1)/(3)=(y-4)/(5)=(z+2)/(2) are

If the straight lines (x-1)/(2)=(y+1)/(lamda)=(z)/(2)and(x+1)/(5)=(y+1)/(2)=(z)/(lamda) are coplanar, find lamda and equations of the planes containing theses two lines.

Let (z-alpha)/(z+alpha) is purely imaginary and |z|=2, alphaepsilonR then alpha is equal to (A) 2 (B) 1 (C) sqrt2 (D) sqrt3