Home
Class 12
MATHS
If (2+sinx)(dy)/(dx)+(y+1)cosx=0 and y(0...

If `(2+sinx)(dy)/(dx)+(y+1)cosx=0` and `y(0)=1` then `y(pi/2)` is equal to

A

(a) 1/3

B

(b) -2/3

C

(c) -1/3

D

(d) 4/3

Text Solution

Verified by Experts

The correct Answer is:
(a)

We have, `(2+sinx)dy/dx+(y+1)cos x =0`
`rArr dy/dx+(cosx)/(2+sinx)y=(-cosx)/(2+sinx)`
which is a linear differential equation.
`therefore IF=e^(int(cosx)/(2+sinx)dx)=e^(log(2+sinx))=2 +sin x`
`therefore` Required solution is given by
`y cdot (2+sinx)=int(-cosx)/(2+sin x)cdot (2+sinx)dx+C`
`rArr y(2+sinx) =-sinx+C`
Also, `y(0)=1`
`therefore 1(2+sin0)=-sin0+C`
`rArr C =2`
`therefore y=(2-sinx)/(2+sinx) rArr y(pi/2)=(2-sin frac{pi}{2})/(2+sin frac {pi}{2})=1/3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let y=g(x) be the solution of the differential equation sinx((dy)/(dx))+y cos x=4x, If y(pi/2)=0 , then y(pi/6) is equal to

If (dy)/(dx)=y+3 and y(0)=2 , then y(ln 2) is equal to

if y=y(x) and (2+sinx)/(y+1)((dy)/(dx))=-cosx ,y(0)=1, then y(pi/2)=

If y = y(x) is the solution of the differential equation, x dy/dx+2y=x^2 satisfying y(1) = 1, then y(1/2) is equal to

Solve : (dy)/(dx)+y=cosx

If x(dy)/(dx)=x^(2)+y-2, y(1)=1 , then y(2) equals ………………..

If y=sqrt(sinx+y),then (dy)/(dx)dot

(1+x+xy^(2))(dy)/(dx)+(y+y^(3))=0

(x + 3y^(2))(dy)/(dx) = y ( y rt 0) .

(dy)/(dx) = y tan x, y = 1 when x = 0