Home
Class 12
MATHS
if y=y(x) and (2+sinx)/(y+1)((dy)/(dx))=...

if `y=y(x)` and `(2+sinx)/(y+1)((dy)/(dx))=-cosx ,y(0)=1,` then `y(pi/2)=` (a) `( b ) (c) (d)1/( e )3( f ) (g) (h)` (i) (b) `( j ) (k) (l)2/( m )3( n ) (o) (p)` (q) (c) `( r ) (s)-( t )1/( u )3( v ) (w) (x)` (y) (d) 1

A

(a) 1/3

B

(b) 2/3

C

(c) -1/3

D

(d) 1

Text Solution

Verified by Experts

The correct Answer is:
(a)

Given, `dy/dx=(-cosx(y+1))/(2+sin x)`
`rArr dy/(y+1)=(-cosx)/(2+sinx)dx`
On integrating both sides
`int dy/(y+1)=-int (cosx)/(2+sinx)dx`
`rArr log (y+1)=-log(2+sin x) +log e`
When `x =0, y=1 rArr c = 4`
`rArr y+1=4/(2+sin x`
`therefore y(pi/2)=4/3-1`
`rArr y(pi/2)=1/3`
Promotional Banner

Similar Questions

Explore conceptually related problems

If (2+sinx)(dy)/(dx)+(y+1)cosx=0 and y(0)=1 , then y((pi)/(2)) is equal to

A curve is such that the mid-point of the portion of the tangent intercepted between the point where the tangent is drawn and the point where the tangent meets the y-axis lies on the line y=xdot If the curve passes through (1,0), then the curve is (a) ( b ) (c)2y=( d ) x^(( e )2( f ))( g )-x (h) (i) (b) ( j ) (k) y=( l ) x^(( m )2( n ))( o )-x (p) (q) (c) ( d ) (e) y=x-( f ) x^(( g )2( h ))( i ) (j) (k) (d) ( l ) (m) y=2(( n ) (o) x-( p ) x^(( q )2( r ))( s ) (t))( u ) (v)

The equation of a curve passing through (1,0) for which the product of the abscissa of a point P and the intercept made by a normal at P on the x-axis equal twice the square of the radius vector of the point P is (a) ( b ) (c) (d) x^(( e )2( f ))( g )+( h ) y^(( i )2( j ))( k )=( l ) x^(( m )4( n ))( o ) (p) (q) (b) ( r ) (s) (t) x^(( u )2( v ))( w )+( x ) y^(( y )2( z ))( a a )=2( b b ) x^(( c c )4( d d ))( e e ) (ff) (gg) (c) ( d ) (e) (f) x^(( g )2( h ))( i )+( j ) y^(( k )2( l ))( m )=4( n ) x^(( o )4( p ))( q ) (r) (s) (d) None of these

The circumcenter of the triangle formed by the line y=x ,y=2x , and y=3x+4 is (a) ( b ) (c)(( d ) (e)6,8( f ))( g ) (h) (b) ( i ) (j)(( k ) (l)6,8( m ))( n ) (o) (c) ( d ) (e)(( f ) (g)3,4( h ))( i ) (j) (d) ( k ) (l)(( m ) (n)-3,-4( o ))( p ) (q)

The equation of the curve satisfying the differential equation y_2(x^2+1)=2x y_1 passing through the point (0,1) and having slope of tangent at x=0 as 3 (where y_2 and y_1 represent 2nd and 1st order derivative), then (a) ( b ) (c) y=f(( d ) x (e))( f ) (g) is a strictly increasing function (h) ( i ) (j) y=f(( k ) x (l))( m ) (n) is a non-monotonic function (o) ( p ) (q) y=f(( r ) x (s))( t ) (u) has a three distinct real roots (v) ( w ) (x) y=f(( y ) x (z))( a a ) (bb) has only one negative root.

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

If y=cos^(-1)((5cosx-12sinx)/(13)),w h e r ex in (0,pi/2), then (dy)/(dx) is. (a)1 (b) -1 (c) 0 (d) none of these

If y=cos^(-1)(cosx),t h e n(dy)/(dx) at x= (5pi)/4 is equal to (a)1 (b)-1 (c)0 (d)4

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)

If y=xlog(x/(a+b x)),t h e nx^3(d^2y)/(dx^2)= (a) (x(dy)/(dx)-y) ^2 (b) x (dy/dx)-y (c) y(dy/dx)-x (d) (y(dy/dx)-x)^2