Home
Class 12
MATHS
Let f: RvecR be a continuous function wh...

Let `f: RvecR` be a continuous function which satisfies `f(x)=` `int_0^xf(t)dtdot` Then the value of `f(1n5)` is______

Text Solution

Verified by Experts

The correct Answer is:
`(0)`

From given integral equation, F(0) = 0.
Alos, differentiating the given integral epuation w.r.t.x
`f'(x)=f(x)`
If `f(x) ne 0`
`rArr (f'(x))/f(x) = 1 rArr log f(x) = x+c`
`rArr f(x)=e^(c)e^(x)`
`therefore f(0)=0 rArr e^(c) =0,` a contradiction
`therefore f(x)=0, AA x in R`
`rArr f(ln5)=0`
Alternate Solution
Given, `f(x) = int_(0)^(x)f(t)dt `
`rArr f(0)=0 and f' (x) = f(x) `
If `f(x) ne 0`
`rArr (f'(x))/(f(x))=1 rArr ln f(x)=x+c`
`rArr f(x)=e^(c) cdot e^(x)`
`therefore f(0)=0`
`rArr e^(c)=0,` a contradiction
`therefore f(x)=0, AA x in R`
`rArr f(ln5)=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

Let f(x) be continuous functions f: RvecR satisfying f(0)=1a n df(2x)-f(x)=xdot Then the value of f(3) is 2 b. 3 c. 4 d. 5

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

Let f be a continuous function on R such that f (1/(4n))=sin e^n/(e^(n^2))+n^2/(n^2+1) Then the value of f(0) is

If a continuous function f on [0, a] satisfies f(x)f(a-x)=1, a >0, then find the value of int_0^a(dx)/(1+f(x))

Let f: RvecR be a continuous odd function, which vanishes exactly at one point and f(1)=1/2dot Suppose that F(x)=int_(-1)^xf(t)dtfora l lx in [-1,2]a n dG(x)=int_(-1)^x t|f(f(t))|dtfora l lx in [-1,2]dotIf(lim)_(xvec1)(F(x))/(G(x))=1/(14), Then the value of f(1/2) is

Let f be continuous and the function g is defined as g(x)=int_0^x(t^2int_0^tf(u)du)dt where f(1) = 3 . then the value of g' (1) +g''(1) is