Home
Class 12
MATHS
The function y=f(x) is the solution o...

The function `y=f(x)` is the solution of the differential equation `(dy)/(dx)+(x y)/(x^2-1)=(x^4+2x)/(sqrt(1-x^2))` in `(-1,1)` satisfying `f(0)=0.` Then `int_((sqrt(3))/2)^((sqrt(3))/2)f(x)dx` is (a) `( b ) (c) (d)pi/( e )3( f ) (g)-( h )(( i )sqrt(( j )3( k ))( l ))/( m )2( n ) (o) (p)` (q) (b) `( r ) (s) (t)pi/( u )3( v ) (w)-( x )(( y )sqrt(( z )3( a a ))( b b ))/( c c )4( d d ) (ee) (ff)` (gg) (c) `( d ) (e) (f)pi/( g )6( h ) (i)-( j )(( k )sqrt(( l )3( m ))( n ))/( o )4( p ) (q) (r)` (s) (d) `( t ) (u) (v)pi/( w )6( x ) (y)-( z )(( a a )sqrt(( b b )3( c c ))( d d ))/( e e )2( f f ) (gg) (hh)` (ii)

A

(a) `pi/3-sqrt3/2`

B

(b) `pi/3-sqrt3/4`

C

(c) `pi/6-sqrt3/4`

D

(d) `pi/3-sqrt3/2`

Text Solution

Verified by Experts

PLAN (i) Solution of the differential equation ` dy/dx+Py=Q` is
`y cdot (IF)= int Qcdot (IF) dx +c`
`if = e^(int Pdx)`
(ii)` int_(-a)^a f(x)dx=2int_(0)^a f(x) dx, if f(-x)=f(x)`
Given differential equation
` dy/dx +x/(x^(2)_1)y=(x^(2)+2x)/sqrt(1-x^(2)`
This is a linear differential equation.
`IF=e^(intx/(x^(2)-1)dx) = e^(1/2lnabs(x^(2)-1))=sqrt(1-x^(2))`
`rArr solution is y sqrt(1-x^(2))=int (x(x^(3)+2))/sqrt(1-x^(2)). sqrt(1-x^(2)) dx`
or ` y sqrt(1-x^(2)) = int (x^(4)+2x) dx = x^(5)/5+x^(2)+c`
`f(0)= 0 rArr c = 0 rArr f(x)sqrt(1-x^(2)) = x^(5)/5+x^(2)`
Now, `int_(-sqrt3//2)^(sqrt3//2) int (x) dx = int_(-sqrt3//2)^(sqrt3//2) x^(2)/(sqrt(1-x^(2)))dx`
[using property]
`= 2int_(0)^(sqrt3//2) x^(2)/(sqrt(1-x^(2)))dx`
`=2int_(0)^(pi//3) (sin^(2)theta)/cos theta cos theta d theta [taking x=sin theta]`
`=2int_(0)^(pi//3)sin^(2) theta d theta=int_(0)^(pi//3)(1- cos2 theta) d theta`
`=(theta-(sin2theta)/2)_(0)^(pi//3) =pi/3-(sin2pi//3)/2=pi/3-sqrt3/4`
Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of a curve passing through (1,0) for which the product of the abscissa of a point P and the intercept made by a normal at P on the x-axis equal twice the square of the radius vector of the point P is (a) ( b ) (c) (d) x^(( e )2( f ))( g )+( h ) y^(( i )2( j ))( k )=( l ) x^(( m )4( n ))( o ) (p) (q) (b) ( r ) (s) (t) x^(( u )2( v ))( w )+( x ) y^(( y )2( z ))( a a )=2( b b ) x^(( c c )4( d d ))( e e ) (ff) (gg) (c) ( d ) (e) (f) x^(( g )2( h ))( i )+( j ) y^(( k )2( l ))( m )=4( n ) x^(( o )4( p ))( q ) (r) (s) (d) None of these

Differentiate y = (x^(3/4) sqrt(x^2 + 1))/((3x+2)^5) .

int_(-1)^(1/2)(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))i se q u a lto (sqrt(e))/2(sqrt(3)+1) (b) (sqrt(3e))/2 sqrt(3e) (d) sqrt(e/3)

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is (a)0 (b) -1 (c) 1 (d) 2

If f(x)=3sqrt(1−x^2)​+3sqrt(1−x^2)​, then f(x) is

The degree of the differential equation satisfying sqrt(1-x^2)+sqrt(1-y^2)=a(x-y) is (a) 1 (b) 2 (c) 3 (d) none of these

"F i n d"(dy)/(dx)"if"y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

Let f: RvecR be a continuous and differentiable function such that (f(x^2+1))^(sqrt(x))=5forAAx in (0,oo), then the value of (f((16+y^2)/(y^2)))^(4/(sqrt(y)))fore a c hy in (0,oo) is equal to (a) 5 (b) 25 (c) 125 (d) 625