Home
Class 12
MATHS
Let alpha and beta be the roots of the q...

Let `alpha` and `beta` be the roots of the quadratic equation `x^(2)` sin `theta - x (sin theta cos theta + 1) + cos theta = 0 (0 lt theta lt 45^(@))`, and `alpha lt beta`.
Then `underset(n=0)overset(oo)(Sigma) (alpha^(n) + ((-1)^(n))/(beta^(n)))` is equal to

A

`(1)/(1-cos theta) - (1)/(1+sin theta)`

B

`(1)/(1-cos theta)+(1)/(1+sin theta)`

C

`(1)/(1+cos theta) - (1)/(1-sin theta)`

D

`(1)/(1+cos theta)+(1)/(1+sin theta)`

Text Solution

Verified by Experts

The correct Answer is:
B

Given
`x^(2) sin theta -x sin theta cos theta -x + cos theta = 0`
Where `0 lt theta lt 45^(@)`
`sin theta (x- cos theta) - 1( x - costheta) = 0`
`rArr (x- cos theta)(x sin theta-1) = 0`
`rArr x = cos theta, x cosec theta`
`x = cos theta, x = coses theta`
`rArr alpha cos theta and beta = cosec theta`
`(because "For" 0 lt theta lt 40^(@), (1)/(sqrt(2)) lt cos theta lt sqrt(2) lt "cosec " theta lt oo rArr cos theta lt cosec theta)`
Now, consider, `underset(n = 0)overset(oo)sum(alpha^(n)+ ((-1)^(n))/(beta^(n))) = underset(n = 0 )overset(oo)sum + underset(n=0) overset(oo)sum ((-1)^(n))/(beta^(n))`
`= (1 + alpha + alpha^(2) + alpha^(3)+........oo)`
`+ (1-(1)/(beta) +(1)/(beta^(2)) - (1)/(beta^(3)) +.....oo)`
`= (1)/(1-alpha) + (1)/(1-((-1)/(beta)))= (1)/(1-alpha) +(1)/(1+(1)/(beta))`
`= (1)/(1-cos theta) +(1)/(1+ sin theta) " "{because (1)/(beta)sin^(2) = 1-cos^(2)x}`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha and beta be the roots of the quadratic equation x^(2) sin theta - x (sin theta cos theta + 1) + cos theta = 0 (0 lt theta lt 45^(@)) , and alpha lt beta . Then Sigma_(n=0)^(oo) (alpha^(n) + ((-1)^(n))/(beta^(n))) is equal to

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

If alpha and beta are roots of the equatioin a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha" and "beta are the roots of the equation x^(2)+3x-4=0 , then (1)/(alpha)+(1)/(beta) is equal to

If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in

Solution of the equation sin (sqrt(1+sin 2 theta))= sin theta + cos theta is (n in Z)

If cos theta - sin theta = (1)/(5) , where 0 lt theta lt (pi)/(4) , then

sqrt((1+ cos theta)/( 1- cos theta)) + sqrt((1- cos theta)/( 1 + cos theta )) ( 0 lt theta lt pi ) is

If alpha and beta the roots of the quadratic equation, x^(2)+x sintheta-2sintheta=0,theta in(0,(pi)/(2)), then (alpha^(12)+beta^(12))/((alpha^(-12)+beta^(-12))(alpha-beta)^(24)) is equal to

If alpha and beta are the roots of the equation x^(2) -1 =0 " then " (2alpha)/(beta ) + (2 beta)/(alpha) is equal to ..........