Home
Class 12
MATHS
If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos ...

If `5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9`, then the value of `cos 4 x ` is

A

`-(3)/(4)`

B

`(1)/(3)`

C

`(2)/(9)`

D

`-(7)/(9)`

Text Solution

Verified by Experts

The correct Answer is:
D

Given , `5 (tan ^(2) x - cos^(2) x) 2 cos 2x + 9`
`rArr 5((2sin^(2)x)/(2cos2x) -cos^(2) x) = 2cos 2x + 9`
` rArr 5((1-cos2x)/(1+ cos 2x)-(1+ cos2x)/(2))= 2 cos 2x + 9`
Put `cos 2x = y,` we have
`5((1-y)/(1+y)-(1+cos2x)/(2)) = 2y + 9`
`rArr 5(2-2y -1-y^(2) -2y)=2(1+y)(2y+9)`
` rArr 5(1-4y -y^(2))=2(2y + 9+ 2y^(2) + 9y)`
`9y^(2) + 42 + 13 = 0`
`rArr 9y^(2) + 3y + 39y + 13=0`
`3y(3y + 1)+(13(3y + 1)=0`
`rArr (3y + 1)(3y + 13) =0`
`rArr y = -(1)/(3),-(13)/(3)`
`therefore cos2x =- (1)/(3),-(13)/(3)`
`therefore cos 2x = - (1)/(3)" "[therefore cos 2x ne -(13)/(3)]`
Now, `cos4x = 2 cos^(2)2x-1`
`= 2(-(1)/(3))^(2) -1 = (2)/(9) -1=-(7)/(9)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If 5(tan^2x - cos^2x)=2cos 2x + 9 , then the value of cos4x is

cos 4x = cos 2x

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

(cos2x)/(sin ^(2) x cos^(2) x)

If cos x + cos^2 x=1 , then the value of sin ^4 x + sin ^6 x is equal to

If cos (2 sin^(-1) x) = (1)/(9) , then find the value of x

cos 3x + cos x - cos 2x =0

If (sin^(2)x-2cos^(2)x+1)/(sin^(2)x+2cos^(2)x-1)=4 , then the value of 2 tan^(2)x is

if cos x=-4/5 , where x in [ 0,pi] then the value of cos (x/2) is equal to

Let f(x)=|[1+sin ^2 x, cos ^2 x , 4 sin 2 x],[ sin ^2 x ,1+cos ^2 x , 4 sin 2 x],[ sin ^2 x , cos ^2 x , 1+4 sin 2 x]| , the maximum value of f(x) is